【題目】將分別標(biāo)有數(shù)字1,68的三張卡片(卡片除所標(biāo)注數(shù)字外其他均相同)洗勻后,背面朝上放在桌面上.

1)隨機(jī)抽取一張卡片,抽到的卡片所標(biāo)數(shù)字是偶數(shù)的概率為   ;

2)隨機(jī)抽取一張卡片,將卡片上標(biāo)有的數(shù)字作為十位上的數(shù)字(不放回),再隨機(jī)抽取一張卡片,將卡片上標(biāo)有的數(shù)字作為個(gè)位上的數(shù)字,用列表或畫(huà)樹(shù)狀圖的方法求組成的兩位數(shù)恰好是“68”的概率.

【答案】1 ;(2 .

【解析】

1)直接利用概率公式計(jì)算可得;

2)此題需要兩步完成,所以采用樹(shù)狀圖法或者采用列表法都比較簡(jiǎn)單,注意做到不重不漏;再根據(jù)樹(shù)狀圖分析求得抽取到的兩位數(shù)恰好是18的情況,再根據(jù)概率公式求出該事件的概率即可.

1)隨機(jī)抽取一張卡片,抽到的卡片所標(biāo)數(shù)字是偶數(shù)的概率為,

故答案為:;

2)畫(huà)樹(shù)狀圖如下:

∵不放回,

∴能組成的兩位數(shù)有16,1861,68,81,86,

由上述樹(shù)狀圖知:所有可能出現(xiàn)的結(jié)果共有6種,恰好是68的有1種,

所以組成的兩位數(shù)恰好是“68”的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知AOB,A0,﹣3),B(﹣2,0).將OAB先繞點(diǎn)B 逆時(shí)針旋轉(zhuǎn)90°得到BO1A1,再把所得三角形向上平移2個(gè)單位得到B1A2O2;

1)在圖中畫(huà)出上述變換的圖形,并涂黑;

2)求OAB在上述變換過(guò)程所掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)方法形成

如圖①,在四邊形ABCD中,ABDC,點(diǎn)HBC的中點(diǎn),連結(jié)AH并延長(zhǎng)交DC的延長(zhǎng)線于M,則有CMAB.請(qǐng)說(shuō)明理由;

2)方法遷移

如圖②,在四邊形ABCD中,點(diǎn)HBC的中點(diǎn),EAD上的點(diǎn),且ABEDEC都是等腰直角三角形,∠BAE=∠EDC90°.請(qǐng)?zhí)骄?/span>AHDH之間的關(guān)系,并說(shuō)明理由.

3)拓展延伸

在(2)的條件下,將RtDEC繞點(diǎn)E旋轉(zhuǎn)到圖③的位置,請(qǐng)判斷(2)中的結(jié)論是否依然成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)舉例說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,以點(diǎn)A為圓心,1為半徑作圓,E是⊙A上的任意一點(diǎn),將DE繞點(diǎn)D按逆時(shí)針旋轉(zhuǎn)90°,得到DF,連接AF,則AF的最小值是(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,正方形ABCD的邊長(zhǎng)為6,菱形EFGH的三個(gè)頂點(diǎn)E,G,H分別在正方形ABCDAB,CDDA上,AH=2

1)寫(xiě)出菱形EFGH的邊長(zhǎng)的最小值;

2)請(qǐng)你探究點(diǎn)F到直線CD的距離為定值;

3)連接FC,設(shè)DG=x,FCG的面積為y;

①求yx之間的函數(shù)關(guān)系式并求出y的取值范圍;

②當(dāng)x的長(zhǎng)為何值時(shí),點(diǎn)F恰好在正方形ABCD的邊上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀材料)

小明遇到這樣一個(gè)問(wèn)題:如圖1,點(diǎn)P在等邊三角形ABC內(nèi),且∠APC150°,PA3,PC4,求PB的長(zhǎng).

小明發(fā)現(xiàn),以AP為邊作等邊三角形APD,連接BD,得到△ABD;由等邊三角形的性質(zhì),可證△ACP≌△ABD,得PCBD;由已知∠APC150°,可知∠PDB的大小,進(jìn)而可求得PB的長(zhǎng).

1)請(qǐng)回答:在圖1中,∠PDB   °,PB   

(問(wèn)題解決)

2)參考小明思考問(wèn)題的方法,解決下面問(wèn)題:

如圖2,△ABC中,∠ACB90°,ACBC,點(diǎn)P在△ABC內(nèi),且PA1,PB,PC,求AB的長(zhǎng).

(靈活運(yùn)用)

3)如圖3,在RtABC中,∠ACB90°,∠BACα,且tanα,點(diǎn)P在△ABC外,且PB3,PC1,直接寫(xiě)出PA長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,AC是弦,直線EF經(jīng)過(guò)點(diǎn)C,ADEF于點(diǎn)DDAC=BAC.

(1)求證:EFO的切線;

(2)求證:AC2=AD·AB;

(3)若O的半徑為2,ACD=300,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,雙曲線yx0)的圖象經(jīng)過(guò)點(diǎn)A4),直線yx與雙曲線交于B點(diǎn),過(guò)A,B分別作y軸、x軸的垂線,兩線交于P點(diǎn),垂足分別為C,D

1)求雙曲線的解析式;

2)求證:ABP∽△BOD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】旋轉(zhuǎn)變換是解決數(shù)學(xué)問(wèn)題中一種重要的思想方法,通過(guò)旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問(wèn)題.

已知,△ABC中,ABAC,∠BACα,點(diǎn)D、E在邊BC上,且∠DAEα

1)如圖1,當(dāng)α60°時(shí),將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°到△AFB的位置,連接DF

求∠DAF的度數(shù);

求證:△ADE≌△ADF;

2)如圖2,當(dāng)α90°時(shí),猜想BD、DECE的數(shù)量關(guān)系,并說(shuō)明理由;

3)如圖3,當(dāng)α120°,BD4,CE5時(shí),請(qǐng)直接寫(xiě)出DE的長(zhǎng)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案