【題目】如圖1,直線l:y=x+mx軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y= x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個交點(diǎn)為C(4,n).

(1)n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求pt的函數(shù)關(guān)系式以及p的最大值;

(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°180°,得到△A1O1B1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為落點(diǎn),請直接寫出落點(diǎn)的個數(shù)和旋轉(zhuǎn)180°時點(diǎn)A1的橫坐標(biāo).

【答案】(1)n=2;y=x2x﹣1;(2)p=;當(dāng)t=2時,p有最大值;(3);

【解析】

(1)把點(diǎn)B的坐標(biāo)代入直線解析式求出m的值,再把點(diǎn)C的坐標(biāo)代入直線求解即可得到n的值,然后利用待定系數(shù)法求二次函數(shù)解析式解答;
(2)令y=0求出點(diǎn)A的坐標(biāo),從而得到OA、OB的長度,利用勾股定理列式求出AB的長,然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根據(jù)矩形的周長公式表示出p,利用直線和拋物線的解析式表示DE的長,整理即可得到Pt的關(guān)系式,再利用二次函數(shù)的最值問題解答;
(3)根據(jù)逆時針旋轉(zhuǎn)角為90°可得A1O1∥y軸時,B1O1∥x軸,旋轉(zhuǎn)角是180°判斷出A1O1∥x軸時,B1A1∥AB,根據(jù)圖3、圖4兩種情形即可解決.

解:

(1)∵直線l:y=x+m經(jīng)過點(diǎn)B(0,﹣1),

m=﹣1,

∴直線l的解析式為y=x﹣1,

∵直線l:y=x﹣1經(jīng)過點(diǎn)C(4,n),

n=×4﹣1=2,

∵拋物線y=x2+bx+c經(jīng)過點(diǎn)C(4,2)和點(diǎn)B(0,﹣1),

,

解得,

∴拋物線的解析式為y=x2x﹣1;

(2)令y=0,則x﹣1=0,

解得x=

∴點(diǎn)A的坐標(biāo)為(,0),

OA=,

RtOAB中,OB=1,

AB===

DEy軸,

∴∠ABO=DEF,

在矩形DFEG中,EF=DEcosDEF=DE=DE,

DF=DEsinDEF=DE=DE,

p=2(DF+EF)=2(+)DE=DE,

∵點(diǎn)D的橫坐標(biāo)為t(0<t<4),

D(t, t2t﹣1),E(t, t﹣1),

DE=(t﹣1)﹣(t2t﹣1)=﹣t2+2t,

p=×(﹣t2+2t)=﹣t2+t,

p=﹣(t﹣2)2+,且﹣<0,

∴當(dāng)t=2時,p有最大值

(3)“落點(diǎn)的個數(shù)有6個,如圖1,圖2中各有2個,圖3,圖4各有一個所示.

如圖3中,設(shè)A1的橫坐標(biāo)為m,則O1的橫坐標(biāo)為m+,

m2m﹣1=(m+2(m+)﹣1,

解得m=,

如圖4中,設(shè)A1的橫坐標(biāo)為m,則B1的橫坐標(biāo)為m+,B1的縱坐標(biāo)比例A1的縱坐標(biāo)大1,

m2m﹣1+1=(m+2(m+)﹣1,

解得m=

∴旋轉(zhuǎn)180°時點(diǎn)A1的橫坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,把矩形沿對角線所在直線折疊,使點(diǎn)落在點(diǎn)處,于點(diǎn),連接

(1)求證:

(2)求證:是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育組為了了解九年級450名學(xué)生排球墊球的情況,隨機(jī)抽查了九年級部分學(xué)生進(jìn)行排球墊球測試(單位:個),根據(jù)測試結(jié)果,制成了下面不完整的統(tǒng)計圖表:

組別

個數(shù)段

頻數(shù)

頻率

1

5

0.1

2

21

0.42

3

4

1)表中的數(shù)      ;

2)估算該九年級排球墊球測試結(jié)果小于10的人數(shù);

3)排球墊球測試結(jié)果小于10的為不達(dá)標(biāo),若不達(dá)標(biāo)的5人中有3個男生,2個女生,現(xiàn)從這5人中隨機(jī)選出2人調(diào)查,試通過畫樹狀圖或列表的方法求選出的2人為一個男生一個女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,∠C30°,點(diǎn)D是線段BC上的動點(diǎn),將線段AD繞點(diǎn)A順時針旋轉(zhuǎn)60°至AD',連接BD'.若AB2cm,則BD'的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點(diǎn),點(diǎn)B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數(shù)m的取值范圍是( 。

A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,ABC的三個頂點(diǎn)分別為A(﹣4,3),B(﹣1,2),C(﹣21.

1)畫出ABC關(guān)于原點(diǎn)O對稱的A1B1C1,并寫出點(diǎn)A1B1、C1的坐標(biāo);

2)畫出ABC繞原點(diǎn)O順時針方向旋轉(zhuǎn)90°得到的A2B2C2,并寫出點(diǎn)A2,B2,C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AC=6,BC=8,以點(diǎn)C為圓心,CA的長為半徑的圓與ABBC分別相交于點(diǎn)D、F,求圓心到AB的距離及AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列的網(wǎng)格圖中.每個小正方形的邊長均為1個單位,在RtABC中,∠C=90°,AC=3,BC=4.

(1)試在圖中作出ABCA為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形AB1C1;

(2)若點(diǎn)B的坐標(biāo)為(-3,5),試在圖中畫出直角坐標(biāo)系,并標(biāo)出A、C兩點(diǎn)的坐標(biāo);

(3)根據(jù)(2)中的坐標(biāo)系作出與ABC關(guān)于原點(diǎn)對稱的圖形A2B2C2,并標(biāo)出B2、C2兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(操作體驗)

如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點(diǎn)P,使得∠APB=30°,如圖②,小明的作圖方法如下:

第一步:分別以點(diǎn)AB為圓心,AB長為半徑作弧,兩弧在AB上方交于點(diǎn)O;

第二步:連接OAOB;

第三步:以O為圓心,OA長為半徑作⊙O,交l;

所以圖中即為所求的點(diǎn).(1)在圖②中,連接,說明∠=30°

(方法遷移)

2)如圖③,用直尺和圓規(guī)在矩形ABCD內(nèi)作出所有的點(diǎn)P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).

(深入探究)

3)已知矩形ABCD,BC=2AB=mPAD邊上的點(diǎn),若滿足∠BPC=45°的點(diǎn)P恰有兩個,則m的取值范圍為________

4)已知矩形ABCD,AB=3BC=2,P為矩形ABCD內(nèi)一點(diǎn),且∠BPC=135°,若點(diǎn)P繞點(diǎn)A逆時針旋轉(zhuǎn)90°到點(diǎn)Q,則PQ的最小值為________

查看答案和解析>>

同步練習(xí)冊答案