【題目】如圖,∠AOB=130°,射線OC∠AOB內(nèi)部任意一條射線,OD、OE分別是∠AOC、∠BOC的角平分線,下列敘述正確的是( 。

A. ∠DOE的度數(shù)不能確定 B. ∠AOD=∠EOC

C. ∠AOD+∠BOE=65° D. ∠BOE=2∠COD

【答案】C

【解析】

依據(jù)OD、OE分別是∠AOCBOC的平分線,即可得出∠AOD+∠BOE=EOC+∠COD=DOE=65°,結(jié)合選項得出正確結(jié)論

OD、OE分別是∠AOC、BOC的平分線∴∠AOD=COD,EOC=BOE

又∵∠AOD+∠BOE+∠EOC+∠COD=AOB=130°,∴∠AOD+∠BOE=EOC+∠COD=DOE=65°.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條 “折線數(shù)軸” .圖中點A表示-11,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距29個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀叮笠擦⒖袒謴?fù)原速.設(shè)運動的時間為t秒.

問:(1)動點P從點A運動至C點需要多少時間?

(2)P、Q兩點相遇時,求出相遇點M所對應(yīng)的數(shù)是多少;

(3)求當(dāng)t為何值時,P、B兩點在數(shù)軸上相距的長度與Q、O兩點在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形都是由同樣大小的正方形按照一定規(guī)律所組成的,其中第①個圖形中一個有2個正方形,第②個圖形中一共有8個正方形,第③個圖形中一共有16個正方形,…,按此規(guī)律,第⑦個圖形中正方形的個數(shù)為( 。

A. 56 B. 65 C. 68 D. 71

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的個數(shù)是(  )

(1)﹣a表示負(fù)數(shù);

(2)多項式﹣3a2b+7a2b2﹣2ab+l的次數(shù)是3;

(3)單項式﹣的系數(shù)為﹣2;

(4)一個有理數(shù)不是整數(shù)就是分?jǐn)?shù)

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是經(jīng)過∠BCA的頂點C的一條直線,CA=CB,E,F(xiàn)是直線CD上的兩點,且∠BEC=CFA=α.

(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請解決下面兩個問題:

①如圖(a),若∠BCA=90°,α=90°,則BE________CF,EF________|BE-AF|(“>”“<”“=”);

②如圖(b),若0°<BCA<180°,請?zhí)砑右粋關(guān)于α與∠BCA關(guān)系的條件________,使①中的兩個結(jié)論仍然成立,并證明兩個結(jié)論成立;

(2)如圖(c),若直線CD經(jīng)過∠BCA的外部,∠BCA=α,請寫出EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小麗化簡的過程,仔細(xì)閱讀后解答所提出的問題.

解:a(a+2b)﹣(a﹣1)2﹣2a

=a2+2ab﹣a2﹣2a﹣1﹣2a 第一步

=2ab﹣4a﹣1.第二步

(1)小麗的化簡過程從第   步開始出現(xiàn)錯誤;

(2)請對原整式進(jìn)行化簡,并求當(dāng)a=,b=﹣6時原整式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半徑為6,圓心角為60°,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個數(shù)形圖的生長過程,自上而下一個空心圓生成一個實心圓,一個實心圓生成一個實心圓和一個空心圓,依此生長規(guī)律,第9行的實心圓的個數(shù)是(

A. 13 B. 21

C. 27 D. 29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 ,對于任意的x都成立

求(1)a0的值

(2)a0﹣a1+a2﹣a3+a4﹣a5的值

(3)a2+a4的值.

查看答案和解析>>

同步練習(xí)冊答案