【題目】如圖O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度數(shù);
(2)試判斷OE是否平分∠BOC,并說明理由.
【答案】(1)155°;(2)OE平分∠BOC.
【解析】
(1)根據(jù)∠BOD=∠DOC+∠BOC,首先利用角平分線的定義和鄰補角的定義求得∠DOC和∠BOC即可;
(2)根據(jù)∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分別求得∠COE與∠BOE的度數(shù)即可說明.
解:(1)因為∠AOC=50°,OD平分∠AOC,
所以∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,
所以∠BOD=∠DOC+∠BOC=155°;
(2)OE平分∠BOC.理由如下:
因為∠DOE=90°,∠DOC=25°,
所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.
又因為∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,
所以∠COE=∠BOE,
所以OE平分∠BOC.
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:
(2)計算:(2+)(2﹣)+÷+
(3)在ABCD中,過點D作DE⊥AB于點E,點F在CD上且DF=BE,連接AF,BF.
①求證:四邊形BFDE是矩形;
②若CF=6,BF=8,AF平分∠DAB,則DF= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點,與反比例函數(shù)y2=的圖象分別交于C、D兩點,點D的坐標為(2,-3),點B是線段AD的中點.則不等式 k1x+b —>0的解集是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正比例函數(shù)與反比例函數(shù)的圖像交于A,B兩點,過點A作AC⊥x軸,垂足為C,△ACO的面積為4。
(1)求反比例函數(shù)的表達式;
(2)點B的坐標為 ;
(3)當時,直接寫出x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年四月份,某校在孝感市爭創(chuàng)“全國文明城市” 活動中,組織全體學生參加了“弘揚孝感文化,爭做文明學生”知識競賽,賽后隨機抽取了部分參賽學生的成績,按得分劃分成 六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.
請根據(jù)圖表提供的信息,解答下列問題:
(1)本次抽樣調(diào)查樣本容量為 ,表中: , ;扇形統(tǒng)計圖中, 等級對應的圓心角 等于 度;(4分=1分+1分+1分)
(2)該校決定從本次抽取的 等級學生(記為甲、乙、丙、丁)中,隨機選擇 名成為學校文明宣講志愿者,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.則ABCD的周長為_____,面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起(其中∠A=60°,∠D=30°,∠E=∠B=45°).
(1)猜想∠ACB與∠DCE的數(shù)量關系,并說明理由.
(2)當∠ACE<180°且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE所有可能的度數(shù)及對應情況下的平行線(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com