【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標(biāo)系中,ABx軸上,點G與點A重合,點FAD上,三角板的直角邊EFBC于點M,反比例函數(shù)y=x0)的圖象恰好經(jīng)過點F,M.若直尺的寬CD=3,三角板的斜邊FG=,則k=_____

【答案】

【解析】

通過作輔助線,構(gòu)造直角三角形,求出MN,FN,進而求出AN、MB,表示出點F、點M的坐標(biāo),利用反比例函數(shù)k的意義,確定點F的坐標(biāo),進而確定k的值即可.

解:過點MMNAD,垂足為N,則MN=AD=3,

RtFMN中,∠MFN=30°,

FN=MN=3,

AN=MB=83=5,

設(shè)OA=x,則OB=x+3,

Fx,8),Mx+3,5),

8x=x+3×5,

解得,x=5,

F5,8),

k=5×8=40

故答案為:40

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品的出廠價為50元,成本為25元.由于在生產(chǎn)過程中,平均每生產(chǎn)1件產(chǎn)品,有污水排出,所以為了凈化環(huán)境,工廠設(shè)計兩種方案對污水進行處理,并準(zhǔn)備實施.

方案甲:工廠將污水排到污水廠統(tǒng)一處理,每處理需付14元的排污費;

方案乙:工廠將污水進行凈化處理后再排出,每處理污水所用原料費為2元,且每月凈化設(shè)備的損耗費為30000元.設(shè)工廠每月生產(chǎn)x件產(chǎn)品(x為正整數(shù),).

1)根據(jù)題意填寫下表:

每月生產(chǎn)產(chǎn)品的數(shù)量/

3500

4500

5500

方案甲處理污水的費用/

31500

方案乙處理污水的費用/

34500

2)設(shè)工廠按方案甲處理污水時每月獲得的利潤為元,按方案乙處理污水時每月獲得的利潤為元,分別求關(guān)于x的函數(shù)解析式;

3)根據(jù)題意填空:

若該工廠按方案甲處理污水時每月獲得的利潤和按方案乙處理污水時每月獲得利潤相同,則該工廠每月生產(chǎn)產(chǎn)品的數(shù)量為_______件;

若該工廠每月生產(chǎn)產(chǎn)品的數(shù)量為7500件時,則該工廠選用方案甲、方案乙中的方案_______處理污水時所獲得的利潤多;

若該工廠每月獲得的利潤為81000元,則該工廠選用方案甲、方案乙中的方案________處理污水時生產(chǎn)產(chǎn)品的數(shù)量少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為了加大退耕還林的力度,出臺了一系列的激勵措施:在退耕還林過程中,每一年的林地面積達到10畝且每年的林地面積在增加的農(nóng)戶,當(dāng)年都可得生活補貼費2000元,且每超過10畝的部分還給予獎勵每畝a元,在林間還有套種其他農(nóng)作物,平均每畝還有b元的收入.

下表是某農(nóng)戶在頭兩年通過退耕還林每年獲得的總收入情況:

(注:年總收入=生活補貼量+政府獎勵量+種農(nóng)作物收入)

1)試根據(jù)以上提供的資料確定a、b的值.

2)從2003年起,如果該農(nóng)戶每年新增林地的畝數(shù)比前一年按相同的增長率增長,那么2005年該農(nóng)戶獲得的總收入達到多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,ABC三個頂點坐標(biāo)分別為A(-2,4)B(-2,1),C(-5,2)

1)請畫出ABC關(guān)于x軸對稱的A1B1C1;

2)將A1B1C1的三個頂點的橫坐標(biāo)與縱坐標(biāo)同時乘-2,得到對應(yīng)的點A2,B2,C2,請畫出A2B2C2;

3A1B1C1A2B2C2面積之比為 (不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐘南山院士談到防護新型冠狀病毒肺炎時說:“我們需要重視防護,但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運動,少熬夜.”某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區(qū)居民在線參與作答年新型冠狀病毒防治全國統(tǒng)一考試全國卷試卷滿分分,社區(qū)管理員隨機從有人的某小區(qū)抽取名人員的答卷成績,根據(jù)他們的成績數(shù)據(jù)繪制了如下的表格和統(tǒng)計圖:

等級

成績

頻數(shù)

頻率

合計

根據(jù)上面提供的信息,回答下列問題: .

1)統(tǒng)計表中的 , ;

2)請補全條形統(tǒng)計圖;

3)根據(jù)抽樣調(diào)查結(jié)果,請估計該小區(qū)答題成績?yōu)椤?/span>級”的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,△ABC的頂點A,C分別是直線y=x+4與坐標(biāo)軸的交點,點B的坐標(biāo)為(﹣2,0),點D是邊AC上的一點,DEBC于點E,點F在邊AB上,且D,F兩點關(guān)于y軸上的某點成中心對稱,連結(jié)DF,EF.設(shè)點D的橫坐標(biāo)為m,EF2l,請?zhí)骄浚?/span>

①線段EF長度是否有最小值.

②△BEF能否成為直角三角形.

小明嘗試用觀察﹣猜想﹣驗證﹣應(yīng)用的方法進行探究,請你一起來解決問題.

1)小明利用幾何畫板軟件進行觀察,測量,得到lm變化的一組對應(yīng)值,并在平面直角坐標(biāo)系中以各對應(yīng)值為坐標(biāo)描點(如圖2).請你在圖2中連線,觀察圖象特征并猜想lm可能滿足的函數(shù)類別.

2)小明結(jié)合圖1,發(fā)現(xiàn)應(yīng)用三角形和函數(shù)知識能驗證(1)中的猜想,請你求出l關(guān)于m的函數(shù)表達式及自變量的取值范圍,并求出線段EF長度的最小值.

3)小明通過觀察,推理,發(fā)現(xiàn)△BEF能成為直角三角形,請你求出當(dāng)△BEF為直角三角形時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是⊙O的直徑,BABC,BDAC于點E,點FDB的延長線上,且∠BAF=∠C

1)求證:AF是⊙O的切線;

2)若BC2BE4,求⊙O半徑r

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)在第一象限內(nèi)的圖象如圖所示,點P的圖象上一動點,作PCx軸于點C,交的圖象于點A,作PDy軸于點D,交的圖象于點B,給出如下結(jié)論:①△ODB與△OCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④PA=3AC,其中正確的結(jié)論序號是( )

A.①③B.②③④C.①③④D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坐標(biāo)系中放置一菱形 OABC,已知∠ABC=60°,點 B y 軸上,OA=1,先將菱形 OABC 沿 x 軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn) 60°,連續(xù)翻轉(zhuǎn)2019次,點 B 的落點依次為 B1,B2,B3,…,則 B2 019 的坐標(biāo)為( )

A.(10100)B.(13105, )C.(1345 )D.(1346,0)

查看答案和解析>>

同步練習(xí)冊答案