【題目】小明登陸泰微課學習頁面后,發(fā)現(xiàn)推薦的數(shù)學微課有四個,其中有兩個等級為A,另外兩個等級為B,如果小明點擊微課學習是隨機的,且每個微課只點擊學習一次.

1)求小明第一次點擊學習的微課等級為A的概率;

2)如果小明第一次點擊的微課等級為A,小明繼續(xù)點擊學習兩次,利用樹狀圖或表格求三次點擊學習中有兩個等級為A的概率.

【答案】1;(2)見解析,

【解析】

1)直接利用概率公式計算可得;

2)畫樹狀圖得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可得.

解:(1)小明第一次點擊學習的微課等級為A的概率為

2)畫樹狀圖如下:

由樹狀圖知,共有6種等可能結(jié)果,其中三次點擊學習中有兩個等級為A的有4種結(jié)果,

三次點擊學習中有兩個等級為A的概率為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等邊三角形,被一矩形所截,被截成三等分,EHBC,則四邊形的面積是的面積的:( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由邊長為1的木條組成的幾何圖案,觀察圖形規(guī)律,解決下列問題:

………

1)填空:第一個圖案由1個正方形組成,共用的木條根數(shù);

第二個圖案由4個正方形組成,共用的木條根數(shù);

第三個圖案由9個正方形組成,共用的木條根數(shù) ;

第四個圖案由16個正方形組成,共用的木條根數(shù) ;

2)第個圖案由個正方形組成,共用木條根數(shù) (用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形OABC構(gòu)成,長方形的長OA12m,寬OC4m.按照圖中所示的平面直角坐標系,拋物線可以用y=x2+bx+c表示.在拋物線型拱璧上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m.那么兩排燈的水平距離最小是(  )

A.2mB.4mC.mD.m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,若拋物線頂點A的橫坐標是,且與y軸交于點,點P為拋物線上一點.

求拋物線的表達式;

若將拋物線向下平移4個單位,點P平移后的對應點為如果,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,把一個含30°的直角三角形BEF放在正方形上,其中∠FBE30°,∠BEF90°BEBC,繞B點轉(zhuǎn)動FBE,在旋轉(zhuǎn)過程中,

1)如圖1,當F點落在邊AD上時,求∠EDC的度數(shù);

2)如圖2,設EF與邊AD交于點M,FE的延長線交DCG,當AM2時,求EG的長;

3)如圖3,設EF與邊AD交于點N,當tanECD時,求NED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將ADF繞點A順時針旋轉(zhuǎn)90°后,得到ABQ,連接EQ,求證:

(1)EA是∠QED的平分線;

(2)EF2=BE2+DF2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=-x+2x 軸交于C,與y軸交于D,以CD為邊作矩形CDAB,點Ax軸上,雙曲線y=(k<0)經(jīng)過點B與直線CD交于E,EM⊥x軸于M,則SBEMC=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知燈塔M方圓一定范圍內(nèi)有鐳射輔助信號,一艘輪船在海上從南向北方向以一定的速度勻速航行,輪船在A處測得燈塔M在北偏東30°方向,行駛1小時后到達B處,此時剛好進入燈塔M的鐳射信號區(qū),測得燈塔M在北偏東45°方向,則輪船通過燈塔M的鐳射信號區(qū)的時間為( 。

A. 1)小時 B. +1)小時 C. 2小時 D. 小時

查看答案和解析>>

同步練習冊答案