【題目】如圖,在平面直角坐標系中,以點M(0, )為圓心,以 長為半徑作⊙Mx軸于A,B兩點,交y軸于C,D兩點,連接AM并延長交⊙MP點,連接PCx軸于E.

(1)求出CP所在直線的解析式;

(2)連接AC,請求△ACP的面積.

【答案】(1)直線CP的解析式為y=3x-3;(2)△ACP的面積=12ACPC=12×23×6=63.

【解析】

試題(1)要求CP所在的直線的解析式,就必須知道C,P兩點的坐標,有圓心M的坐標,有圓的半徑,那么可求出OC的,OM的長,直角三角形AMO中有AM,OM的值,就能求出OA,OB的長,那么P的橫坐標就求出來了,連接PB,那么OM是三角形APB的中位線,PB=2OM,已經(jīng)求出了OM的長,那么PB的長也就求出來了,這樣P點的坐標就求出來了,有了C,P的坐標,可根據(jù)待定系數(shù)法求出CP所在直線的解析式;

(2)求三角形ACP的面積實際上是求直角邊AC,PC的長,因為三角形ACP是個直角三角形,有斜邊AB的長,只要求出這個三角形中銳角的度數(shù),即可求出直角邊的長,在三角形AMO中,我們可求出∠AMO的度數(shù),根據(jù)圓周角定理,也就求出了∠P的度數(shù),有了銳角的度數(shù)和斜邊的長,直角邊就能求出來了,面積也就能求出來了.

試題解析: (1)連接PB,

PA是⊙M的直徑,

∴∠PBA=90°,

DC是⊙M的直徑,且垂直于弦AB,

DC平分弦AB,

RtAMOAM=2,OM=

AO=OB=3,

又∵MOAB,

PBMO,

PB=2OM=2,

P點坐標為(3,2),

CM=2,OM=,

OC=CMOM=,

C(0,),直線CPC,P兩點,

設(shè)直線CP的解析式為y=kx+b(k≠0),

得到,

解得:

∴直線CP的解析式為y=x;

(2)RtAMO中,∠AMO=60°,

又∵AM=CM,

AMC為等邊三角形,

AC=AM=2,MAC=60°

又∵AP為⊙M的直徑,

∴∠ACP=90°,APC=30°,

PC=AC=×2=6,

ACP的面積=ACPC=×2×6=6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店老板到廠家選購、兩種品牌的羽絨服,品牌羽絨服每件進價比品牌羽絨服每件進價多元,若用元購進種羽絨服的數(shù)量是用元購進種羽絨服數(shù)量的.

1)求、兩種品牌羽絨服每件進價分別為多少元?

2)若品牌羽絨服每件售價為元,品牌羽絨服每件售價為元,服裝店老板決定一次性購進、兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤不低于元,則最少購進品牌羽絨服多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB與拋物線Cyax2+2x+c相交于點A(1,0)和點B(2,3)兩點.

(1)求拋物線C函數(shù)表達式;

(2)若點M是位于直線AB上方拋物線上的一動點,當的面積最大時,求此時的面積S及點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的三條邊為邊,分別向外作正方形,連接EFGH,DJ,如果△ABC的面積為8,則圖中陰影部分的面積為(

A.28B.24C.20D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點E,G上一動點,AGDC的延長線交于點F,連接AC,AD,GCGD

1)求證:∠FGC=∠AGD;

2)若AD6

①當ACDGCG2時,求sinADG

②當四邊形ADCG面積最大時,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC6BC8,則ABC的外心和內(nèi)心之間的距離為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB6EAB的中點,將△ADE沿DE翻折得到△FDE,延長EFBCG,FHBC,垂足為H,連接BFDG.以下結(jié)論:BFED;DFG≌△DCG;FHB∽△EAD;tan∠GEB;SBFG2.6;其中正確的個數(shù)是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了扎實推進精準扶貧工作,某地出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了25種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A、B、CD類貧困戶.為檢査幫扶措施是否落實,隨機抽取了若干貧困戶進行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計圖:

請根據(jù)圖中信息回答下面的問題:

1)本次抽樣調(diào)查了多少戶貧困戶?

2)抽查了多少戶C類貧困戶?并補全統(tǒng)計圖;

3)若該地共有13000戶貧困戶,請估計至少得到4項幫扶措施的大約有多少戶?

4)為更好地做好精準扶貧工作,現(xiàn)準備從D類貧困戶中的甲、乙、丙、丁四戶中隨機選取兩戶進行重點幫扶,請用樹狀圖或列表法求出恰好選中甲和丁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知點A(1,a是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、DB(3,﹣1),

(1)求反比例函數(shù)的解析式

(2)求點D坐標,并直接寫出y1y2x的取值范圍;

(3)動點Px,0)x軸的正半軸上運動當線段PA與線段PB之差達到最大時,求點P的坐標

查看答案和解析>>

同步練習冊答案