【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)P在AB上從A向B運(yùn)動(dòng),連接DP交AC于點(diǎn)Q.
(1)試證明:無(wú)論點(diǎn)P運(yùn)動(dòng)到AB上何處時(shí),都有△ADQ≌△ABQ;
(2)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)到什么位置時(shí),△ADQ的面積是正方形ABCD面積的;
(3)若點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B,再繼續(xù)在BC上運(yùn)動(dòng)到點(diǎn)C,在整個(gè)運(yùn)動(dòng)過程中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△ADQ恰為等腰三角形.
【答案】(1)證明見解析;(2)AP=2;(3)P在B點(diǎn),C點(diǎn),或在CP=4(-1)處,△ADQ是等腰三角形.
【解析】
試題分析:(1)可由SAS求得△ADQ≌△ABQ;
(2)過點(diǎn)Q作QE⊥AD于E,QF⊥AB于F,則QE=QF,若△ADQ的面積是正方形ABCD面積的,則有S△ADQ=ADQE=S正方形ABCD,求得OE的值,再利用△DEQ∽△DAP有,解得AP值;
(3)點(diǎn)P運(yùn)動(dòng)時(shí),△ADQ恰為等腰三角形的情況有三種:有QD=QA或DA=DQ或AQ=AD.由正方形的性質(zhì)知,①當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B重合時(shí),QD=QA,此時(shí)△ADQ是等腰三角形,②當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),點(diǎn)Q與點(diǎn)C也重合,此時(shí)DA=DQ,△ADQ是等腰三角形,③當(dāng)AD=AQ=4時(shí),有CP=CQ,CP=AC-AD而由正方形的對(duì)角線的性質(zhì)得到CP的值.
試題解析:(1)在正方形ABCD中,
無(wú)論點(diǎn)P運(yùn)動(dòng)到AB上何處時(shí),都有
AD=AB,∠DAQ=∠BAQ,AQ=AQ,
∴△ADQ≌△ABQ;
(2)△ADQ的面積恰好是正方形ABCD面積的時(shí),
過點(diǎn)Q作QE⊥AD于E,QF⊥AB于F,則QE=QF,
∵在邊長(zhǎng)為4的正方形ABCD中,
∴S正方形ABCD=16,
∴AD×QE=S正方形ABCD=×16=,
∴QE=,
∵EQ∥AP,
∴△DEQ∽△DAP,
∴,即,
解得AP=2,
∴AP=2時(shí),△ADQ的面積是正方形ABCD面積的;
(3)若△ADQ是等腰三角形,則有QD=QA或DA=DQ或AQ=AD,
①當(dāng)AD=DQ時(shí),則∠DQA=∠DAQ=45°
∴∠ADQ=90°,P為C點(diǎn),
②當(dāng)AQ=DQ時(shí),則∠DAQ=∠ADQ=45°,
∴∠AQD=90°,P為B,
③AD=AQ(P在BC上),
∴CQ=AC-AQ=BC-BC=(-1)BC
∵AD∥BC
∴,即可得=1,
∴CP=CQ=(-1)BC=4(-1)
綜上,P在B點(diǎn),C點(diǎn),或在CP=4(-1)處,△ADQ是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰三角形的一邊長(zhǎng)為4,另一邊長(zhǎng)為8,則這個(gè)等腰三角形的周長(zhǎng)為 ( )
A. 16 B. 20 C. 20或16 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的個(gè)數(shù)為( )
①無(wú)限小數(shù)都是無(wú)理數(shù);②不循環(huán)小數(shù)都是無(wú)理數(shù);③無(wú)理數(shù)都是無(wú)限小數(shù);④無(wú)理數(shù)也有負(fù)數(shù);⑤無(wú)理數(shù)分為正無(wú)理數(shù)、零、負(fù)無(wú)理數(shù).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在信息快速發(fā)展的社會(huì),“信息消費(fèi)”已成為人們生活的重要部分.我市區(qū)機(jī)抽取了部分家庭,調(diào)查每月用于信息消費(fèi)的金額,數(shù)據(jù)整理成如圖所示的不完整統(tǒng)計(jì)圖.已知A、B兩組戶數(shù)直方圖的高度比為1:5,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
(1)A組的頻數(shù)是 ,本次調(diào)查樣本的容量是 ;
(2)補(bǔ)全直方圖(需標(biāo)明各組頻數(shù));
(3)若該社區(qū)有1500戶住戶,請(qǐng)估計(jì)月信息消費(fèi)額不少于300元的戶數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形是軸對(duì)稱圖形,其對(duì)稱軸是_______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列每組數(shù)分別是三根小木棒的長(zhǎng)度,用它們能擺成三角形的是( )
A. 3cm,4cm,8cm B. 8cm,7cm,15cm
C. 13cm,12cm,20cm D. 5cm,5cm,11cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次方程x2-2x+1=0 的根的情況為( )
A. 有兩個(gè)相等的實(shí)數(shù)根 B. 有兩個(gè)不相等的實(shí)數(shù)根
C. 只有一個(gè)實(shí)數(shù)根 D. 沒有實(shí)數(shù)根
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com