【題目】如圖1,某超市從底樓到二樓有一自動(dòng)扶梯,圖2是側(cè)面示意圖.已知自動(dòng)扶梯AB的坡度為1:2.4,AB的長(zhǎng)度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BC⊥MN,在自動(dòng)扶梯底端A處測(cè)得C點(diǎn)的仰角為42°,求二樓的層高BC(精確到0.1米).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

【答案】解:延長(zhǎng)CB交PQ于點(diǎn)D.

∵M(jìn)N∥PQ,BC⊥MN,
∴BC⊥PQ.
∵自動(dòng)扶梯AB的坡度為1:2.4,

設(shè)BD=5k米,AD=12k米,則AB=13k米.
∵AB=13米,
∴k=1,
∴BD=5米,AD=12米.
在Rt△CDA中,∠CDA=90゜,∠CAD=42°,
∴CD=ADtan∠CAD≈12×0.90≈10.8米,
∴BC≈5.8米.
答:二樓的層高BC約為5.8米.
【解析】延長(zhǎng)CB交PQ于點(diǎn)D,根據(jù)坡度的定義即可求得BD的長(zhǎng),然后在直角△CDA中利用三角函數(shù)即可求得CD的長(zhǎng),則BC即可得到.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的切線,切點(diǎn)為B,連接AO,AO與⊙O交于點(diǎn)C,BD為⊙O的直徑,連接CD,若∠A=30°,⊙O的半徑為2,則圖中陰影部分的面積為(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個(gè),藍(lán)球1個(gè),現(xiàn)在從中任意摸出一個(gè)紅球的概率為
(1)求袋中黃球的個(gè)數(shù);
(2)第一次摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用樹狀圖或列表法求兩次摸出的都是紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若原方程的兩個(gè)實(shí)數(shù)根為x1、x2 , 且滿足x12+x22=|x1|+|x2|+2x1x2 , 求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數(shù)y=|2x+b|(b為常數(shù))的圖象.若該圖象在直線y=2下方的點(diǎn)的橫坐標(biāo)x滿足0<x<3,則b的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在2016年龍巖市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯(cuò)誤的是(
A.平均數(shù)為160
B.中位數(shù)為158
C.眾數(shù)為158
D.方差為20.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一枚質(zhì)地均勻的正四面體骰子,它有四個(gè)面并分別標(biāo)有數(shù)字1,2,3,4. 如圖2,正方形ABCD頂點(diǎn)處各有一個(gè)圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時(shí)針方向連續(xù)跳幾個(gè)邊長(zhǎng).
如:若從圈A起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長(zhǎng),落到圈D;若第二次擲得2,就從D開始順時(shí)針連續(xù)跳2個(gè)邊長(zhǎng),落到圈B;…
設(shè)游戲者從圈A起跳.

(1)嘉嘉隨機(jī)擲一次骰子,求落回到圈A的概率P1;
(2)淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她與嘉嘉落回到圈A的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線交于點(diǎn)O , 以AD為邊向外作Rt△ADE , ∠AED=90°,連接OE , DE=6,OE= ,則另一直角邊AE的長(zhǎng)為( ).

A.
B.2
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D為AB上一點(diǎn),E為BC上一點(diǎn),且AC=CD=BD=BE,∠A=50°,則∠CDE的度數(shù)為(  )
A.50°
B.51°
C.51.5°
D.52.5°

查看答案和解析>>

同步練習(xí)冊(cè)答案