【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論中正確結(jié)論的個(gè)數(shù)是 ( )
①△ABG≌△AFG;②∠EAG=450;③BG=GC; ④AG∥CF; ⑤S△FGC=3.6
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
【答案】D
【解析】分析:①用HL證明△ABG≌△AFG;②由△ADE≌△AFE,△ABG≌△AFG,得到∠EAG=∠BAD;③在直角三角形CEG中,由勾股定理求GC的長(zhǎng);④根據(jù)基本圖形“等腰三角形+角平分線→平行線”證明;⑤由GF:EG=3:5,得S△FCG:S△ECG=3:5.
詳解:①根據(jù)軸對(duì)稱的性質(zhì)得,△ADE≌△AFE,
所以AD=AF,∠AFE=∠D=90°.
因?yàn)?/span>AB=AD,∠B=90°,所以AB=AF,
因?yàn)?/span>AG=AG,所以△ABG≌△AFG.
則①正確;
②因?yàn)?/span>△ADE≌△AFE,△ABG≌△AFG,
所以∠DAE=∠FAE,∠BAG=∠FAG,
所以∠EAG=∠FAE+∠FAE=∠BAD=×90°=45°.
則②正確;
③因?yàn)?/span>△ADE≌△AFE,△ABG≌△AFG,
所以ED=EF,GB=GF,所以EG=DE+BG,
設(shè)BG=x,則CG=FG=6-x,DE=2,CE=4,EG=x+2=x+2.
Rt△CEG中,由勾股定理得,CG2+CE2=EG2,
所以(6-x)2+42=(x+2)2,解得x=3.
則CG=6-x=3,又BG=x=3,所以BG=CG.
則③正確;
④因?yàn)?/span>△ABG≌△AFG,所以∠AGB=∠AGF.
因?yàn)?/span>BG=CG,BG=GF,所以CG=GF,所以∠GCF=∠GFC.
因?yàn)?/span>∠BGE=∠GCF+∠GFC,所以∠AGB=∠GCF,所以AG∥CF.
則④正確;
⑤因?yàn)?/span>GF=3,GE=5,所以S△FGC=S△GCE=×GC·CE=××3×4=3.6.
則⑤正確.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ;
(2)|5﹣3|表示5與3之差的絕對(duì)值,實(shí)際上也可理解為5與3兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點(diǎn)與表示有理數(shù)3的點(diǎn)之間的距離.試探索:
①:若|x﹣8|=2,則x= .
②:|x+12|+|x﹣8|的最小值為 .
(3)動(dòng)點(diǎn)P從O點(diǎn)出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.求當(dāng)t為多少秒時(shí)?A,P兩點(diǎn)之間的距離為2;
(4)動(dòng)點(diǎn)P,Q分別從O,B兩點(diǎn),同時(shí)出發(fā),點(diǎn)P以每秒5個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),Q點(diǎn)以P點(diǎn)速度的兩倍,沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問(wèn)當(dāng)t為多少秒時(shí)?P,Q之間的距離為4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)C、A、D在同一條直線上,∠ABC=∠ADE=α,線段BD、CE交于點(diǎn)M.
(1)如圖1,若AB=AC,AD=AE
①問(wèn)線段BD與CE有怎樣的數(shù)量關(guān)系?并說(shuō)明理由;
②求∠BMC的大。ㄓ忙帘硎荆;
(2)如圖2,若AB=BC=kAC,AD=ED=kAE,則線段BD與CE的數(shù)量關(guān)系為 , ∠BMC=(用α表示);
(3)在(2)的條件下,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),連接EC并延長(zhǎng)交BD于點(diǎn)M.則∠BMC=(用α表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象都經(jīng)過(guò)點(diǎn)A(﹣2,6)和點(diǎn)(4,n).
(1)求這兩個(gè)函數(shù)的解析式;
(2)直接寫出不等式kx+b≤ 的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:一粒米微不足道,平時(shí)在飯桌上總會(huì)毫不經(jīng)意地掉下幾粒,甚至有些挑食的同學(xué)把整碗米飯倒掉.針對(duì)這種浪費(fèi)糧食現(xiàn)象,老師組織同學(xué)們進(jìn)行了實(shí)際測(cè)算,稱得粒大米約重克.
嘗試解決:
粒米重約多少克?
按我國(guó)現(xiàn)有人口億,每年天,每人每天三餐計(jì)算,若每人每餐節(jié)約粒大米,一年大約能節(jié)約大米多少千克?(結(jié)果用科學(xué)記數(shù)法表示)
假設(shè)我們把一年節(jié)約的大米賣成錢,按每千克元計(jì)算,可賣得人民幣多少元?(結(jié)果用科學(xué)記數(shù)法表示,保留到)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣ ,0)、B(3 ,0)、C(0,3)三點(diǎn),線段BC與拋物線的對(duì)稱軸相交于D.該拋物線的頂點(diǎn)為P,連接PA、AD、DP,線段AD與y軸相交于點(diǎn)E.
(1)求該拋物線的解析式;
(2)在平面直角坐標(biāo)系中是否存在點(diǎn)Q,使以Q、C、D為頂點(diǎn)的三角形與△ADP全等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由;
(3)將∠CED繞點(diǎn)E順時(shí)針旋轉(zhuǎn),邊EC旋轉(zhuǎn)后與線段BC相交于點(diǎn)M,邊ED旋轉(zhuǎn)后與對(duì)稱軸相交于點(diǎn)N,連接PM、DN,若PM=2DN,求點(diǎn)N的坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線BD經(jīng)過(guò)坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)y= 的圖象上,若點(diǎn)A的坐標(biāo)為(﹣2,﹣3),則k的值為( )
A.1
B.﹣5
C.4
D.1或﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:有理數(shù)xA用數(shù)軸上點(diǎn)A表示,xA叫做點(diǎn)A在數(shù)軸上的坐標(biāo);有理數(shù)xB用數(shù)軸上點(diǎn)B表示,xB叫做點(diǎn)B在數(shù)軸上的坐標(biāo).|AB|表示數(shù)軸上的兩點(diǎn)A,B之間的距離.
(1)借助數(shù)軸,完成下表:
xA | xB | xA﹣xB | |AB| |
3 | 2 | 1 | 1 |
1 | 5 |
|
|
2 | ﹣3 |
|
|
﹣4 | 1 |
|
|
﹣5 | ﹣2 |
|
|
﹣3 | ﹣6 |
|
|
(2)觀察(1)中的表格內(nèi)容,猜想|AB|= ;(用含xA,xB的式子表示,不用說(shuō)理)
(3)已知點(diǎn)A在數(shù)軸上的坐標(biāo)是﹣2,且|AB|=8,利用(2)中的結(jié)論求點(diǎn)B在數(shù)軸上的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了更好地活躍校園文化生活,擬對(duì)本校自辦的“輝煌”校報(bào)進(jìn)行改版.先從全校學(xué)生中隨機(jī)抽取一部分學(xué)生進(jìn)行了一次問(wèn)卷調(diào)查,題目為“你最喜愛(ài)校報(bào)的哪一個(gè)板塊”(每人只限選一項(xiàng)).問(wèn)卷收集整理后繪制了不完整的頻數(shù)分布表和如圖扇形統(tǒng)計(jì)圖.
(1)填空:頻數(shù)分布表中a= , b=;
(2)“自然探索”板塊在扇形統(tǒng)計(jì)圖中所占的圓心角的度數(shù)為;
(3)在參加此次問(wèn)卷調(diào)查的學(xué)生中,最喜愛(ài)哪一個(gè)板塊的人數(shù)最多?有多少人喜歡?
(4)若全校有1500人,估計(jì)喜歡“校園新聞”板塊的有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com