【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有(  )

A. 1個 B. 2個 C. 3個 D. 4個

【答案】C

【解析】

試題由四邊形ABCD是平行四邊形,得到∠ABC=∠ADC=60°∠BAD=120°,根據(jù)AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等邊三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故正確;由于AC⊥AB,得到SABCD=ABAC,故正確,根據(jù)AB=BCOB=BD,且BDBC,得到ABOB,故錯誤;根據(jù)三角形的中位線定理得到OE=AB,于是得到OE=BC,故正確.

解:四邊形ABCD是平行四邊形,

∴∠ABC=∠ADC=60°,∠BAD=120°

∵AE平分∠BAD,

∴∠BAE=∠EAD=60°

∴△ABE是等邊三角形,

∴AE=AB=BE

∵AB=BC,

∴AE=BC,

∴∠BAC=90°

∴∠CAD=30°,故正確;

∵AC⊥AB,

∴SABCD=ABAC,故正確,

∵AB=BCOB=BD,且BDBC,

∴ABOB,故錯誤;

∵CE=BE,CO=OA

∴OE=AB,

∴OE=BC,故正確.

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學老師為了了解學生在數(shù)學學習中常見錯誤的糾正情況,收集了學生在作業(yè)和考試中的常見錯誤,編制了10道選擇題,每題3分,對她所任教的初三(1)班和(2)班進行了檢測.如圖表示從兩班各隨機抽取的10名學生的得分情況:

(1)利用圖中提供的信息,補全下表:

班級

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

(1)班

24

24

(2)班

24


(2)若把24分以上(含24分)記為“優(yōu)秀”,兩班各有60名學生,請估計兩班各有多少名學生成績優(yōu)秀;
(3)觀察圖中的數(shù)據(jù)分布情況,你認為哪個班的學生糾錯的整體情況更好一些?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是正六邊形ABCDEF的中心.

1)找出這個軸對稱圖形的對稱軸;

2)這個正六邊形繞點O旋轉(zhuǎn)多少度后能和原來的圖形重合?

3)如果換成其他的正多邊形呢?能得到一般的結(jié)論嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為保護美麗如畫的邛海濕地,西昌市污水處理廠決定先購買兩型污水處理設(shè)備共20臺,對濕地周邊污水進行處理.每臺型污水處理設(shè)備12萬,每臺型污水處理設(shè)備10萬,已知2型污水處理設(shè)備和1型污水處理設(shè)備每周處理污水680噸,3型污水處理設(shè)備和2型污水處理設(shè)備每周處理污水1120噸.

1)求每臺型污水處理設(shè)備每周分別可以處理污水多少噸?

2)經(jīng)預(yù)算,污水處理廠購買設(shè)備的資金不超過230萬元,每周處理污水的量不低于4500噸,請列舉出所有購買方案,并指出所需購買資金最少的方案及最少資金.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題
(1)閱讀理解:如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點,若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關(guān)系.

解決此問題可以用如下方法:延長AE交DC的延長線于點F,易證△AEB≌△FEC,得到AB=FC,從而把AB,AD,DC轉(zhuǎn)化在一個三角形中即可判斷.
AB、AD、DC之間的等量關(guān)系為;
(2)問題探究:如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長線交于點F,E是BC的中點,若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論.

(3)問題解決:如圖③,AB∥CF,AE與BC交于點E,BE:EC=2:3,點D在線段AE上,且∠EDF=∠BAE,試判斷AB、DF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,的中點.點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.它們運動的時間為.設(shè)點的運動速度為,若使得,則的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“2017年張學友演唱會”于6月3日在我市觀山湖奧體中心舉辦,小張去離家2520米的奧體中心看演唱會,到奧體中心后,發(fā)現(xiàn)演唱會門票忘帶了,此時離演唱會開始還有23分鐘,于是他跑步回家,拿到票后立刻找到一輛“共享單車”原路趕回奧體中心,已知小張騎車的時間比跑步的時間少用了4分鐘,且騎車的平均速度是跑步的平均速度的1.5倍.
(1)求小張跑步的平均速度;
(2)如果小張在家取票和尋找“共享單車”共用了5分鐘,他能否在演唱會開始前趕到奧體中心?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形網(wǎng)格中建立如圖所示的平面直角坐標系xOy.△ABC的三個頂點都在格點上,點A的坐標是(4,4),請解答下列問題:

(1)將△ABC向下平移5個單位長度,畫出平移后的A1B1C1,并寫出點A的對應(yīng)點A1的坐標;

(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2;

(3)將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A3B3C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AM=CM,MP⊥AB于點P.求證:BP2=AP2+BC2.

查看答案和解析>>

同步練習冊答案