【題目】(1)計(jì)算:﹣(﹣π)0﹣2sin60°
(2)化簡:(1+

【答案】解:(1)原式=4﹣1﹣2×
=4﹣1﹣3
=0;
(2)原式=
=
【解析】(1)先化簡二次根式,計(jì)算0指數(shù)冪與特殊角的三角函數(shù),再算加減;
(2)先算加法通分,再算乘法約分即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解分式的混合運(yùn)算的相關(guān)知識,掌握運(yùn)算的順序:第一級運(yùn)算是加法和減法;第二級運(yùn)算是乘法和除法;第三級運(yùn)算是乘方.如果一個式子里含有幾級運(yùn)算,那么先做第三級運(yùn)算,再作第二級運(yùn)算,最后再做第一級運(yùn)算;如果有括號先做括號里面的運(yùn)算.如順口溜:"先三后二再做一,有了括號先做里."當(dāng)有多層括號時,先算括號內(nèi)的運(yùn)算,從里向外{[(?)]},以及對零指數(shù)冪法則的理解,了解零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB>AD,按以下步驟作圖:以點(diǎn)A為圓心,小于AD的長為半徑畫弧,分別交AB、AD于點(diǎn)E、F;再分別以點(diǎn)E、F為圓心,大于 EF的長為半徑畫弧,兩弧交于點(diǎn)G;作射線AG交CD于點(diǎn)H,則下列結(jié)論中不能由條件推理得出的是(
A.AG平分∠DAB
B.AD=DH
C.DH=BC
D.CH=DH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別是線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②BF∥EC;③AB=AC,從中選擇一個條件使四邊形BECF是菱形,并給出證明,你選擇的條件是___(只填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機(jī)摸出1個球,將“摸出黑球”記為事件A,請完成下列表格:

事件A

必然事件

隨機(jī)事件

m的值


(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機(jī)摸出1個黑球的概率等于,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,坐標(biāo)原點(diǎn)O為矩形ABCD的對稱中心,頂點(diǎn)A的坐標(biāo)為(1,t),AB∥x軸,矩形A′B′C′D′與矩形ABCD是位似圖形,點(diǎn)O為位似中心,點(diǎn)A′,B′分別是點(diǎn)A,B的對應(yīng)點(diǎn),=k.已知關(guān)于x,y的二元一次方程(m,n是實(shí)數(shù))無解,在以m,n為坐標(biāo)記為(m,n)的所有的點(diǎn)中,若有且只有一個點(diǎn)落在矩形A′B′C′D′的邊上,則kt的值等于( 。

A.
B.1
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是我們常見的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.

(1)如圖②,AE是⊙O的直徑,用直尺和圓規(guī)作⊙O的內(nèi)接正八邊形ABCDEFGH(不寫作法,保留作圖痕跡);
(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個圓錐的側(cè)面,則這個圓錐底面圓的半徑等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三邊長為a、b、c,且a<b<c,若平行于三角形一邊的直線l將△ABC的周長分成相等的兩部分.設(shè)圖中的小三角形①、②、③的面積分別為S1 , S2 , S3 , 則S1 , S2 , S3的大小關(guān)系是 (用“<”號連接)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點(diǎn)E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4 , ∠BAD=60°,且AB>4

(1)求∠EPF的大小。
(2)若AP=6,求AE+AF的值。
(3)若△EFP的三個頂點(diǎn)E、F、P分別在線段AB、AD、AC上運(yùn)動,請直接寫出AP長的最大值和最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某倉儲中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上

(1)求斜坡AB的水平寬度BC。
(2)矩形DEFG為長方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5m時,求點(diǎn)D離地面的高。(≈2.236,結(jié)果精確到0.1m)

查看答案和解析>>

同步練習(xí)冊答案