【題目】小明在學(xué)習(xí)了利用圖象法來求一元二次方程的近似根的知識后進(jìn)行了嘗試:在直角坐標(biāo)系中作出二次函數(shù)的圖象,由圖象可知,方程有兩個根,一個在之間,另一個在之間.利用計算器進(jìn)行探索:由下表知,方程的一個近似根是(

A. -4.1 B. -4.2 C. -4.3 D. -4.4

【答案】C

【解析】

當(dāng)y等于0時,x的值即為方程x2+2x﹣10=0的一個根,分析題干中的表格,方程的解應(yīng)為y最接近0x的值.

解:當(dāng)x﹣4.14.3變換過程中y值一直在增大,并越來越接近0,當(dāng)x=﹣4.4時,y值大于0,則方程的一個根在﹣4.3﹣4.4之間,x=﹣4.3時的y值比x=﹣4.4時更接近0,所以方程的一個近似根為:﹣4.3

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:

如圖①,在四邊形ABCD中,ABAD,∠BAD120°,∠B=∠ADC90°.E、F分別是BC、CD上的點(diǎn).且∠EAF60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.

解法探究:小明同學(xué)通過思考,得到了如下的解決方法.

延長FD到點(diǎn)G,使DGBE,連結(jié)AG,先證明ABE≌△ADG,再證明AEF≌△AGF,從而可得結(jié)論.

1)請先寫出小明得出的結(jié)論,并在小明的解決方法的提示下,寫出所得結(jié)論的理由.

解:線段BE、EF、FD之間的數(shù)量關(guān)系是: .

理由:延長FD到點(diǎn)G,使DGBE,連結(jié)AG.(以下過程請同學(xué)們完整解答)

2)拓展延伸:

如圖②,在四邊形ABCD中,ABAD,若∠B+D180°,E、F分別是BCCD上的點(diǎn).且∠EAFBAD,則(1)中的結(jié)論是否仍然成立?若成立,請?jiān)侔呀Y(jié)論寫一寫;若不成立,請直接寫出你認(rèn)為成立的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

完成下列問題:

1___________

2 (結(jié)果用冪表示).

3)已知,求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)D是等腰直角三角形ABC斜邊BC所在直線上一點(diǎn)(不與點(diǎn)B重合),連接AD.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上時,將線段AD繞點(diǎn)A逆時針方向旋轉(zhuǎn)90°得到線段AE,連接CE.求證:BD=CE,BDCE;

(2)如圖2,當(dāng)點(diǎn)D在線段BC延長線上時,將線段AD繞點(diǎn)A逆時針方向旋轉(zhuǎn)90°得到線段AE,連接CE.請畫出圖形。上述結(jié)論是否仍然成立,并說明理由;

(3)根據(jù)圖2,請直接寫出AD、BD、CD三條線段之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,BDAC邊上的高,延長BCE,使CE=CD,連接DE。

1)求∠E的度數(shù)?

2)△DBE是什么三角形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程的一根為

關(guān)于的函數(shù)關(guān)系式;

求證:拋物線軸有兩個交點(diǎn);

設(shè)拋物線軸交于、兩點(diǎn)(、不重合),且以為直徑的圓正好經(jīng)過該拋物線的頂點(diǎn),求,的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 C 是線段 AB 垂直平分線 m 上一動點(diǎn),連接 AC, AC 為邊作等邊△ACD,點(diǎn) D 在直線 AB 的上方,連接 DB 與直線 m 交于點(diǎn) E,連接 BC

(1)如圖 1,點(diǎn) C 在線段 AB

①根據(jù)題意補(bǔ)全圖 1;

②求證:EAC=EDC;

(2)如圖 2,點(diǎn) C 在直線 AB 的上方,0°<∠CAB30°,用等式表示線段 BECE、DE 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABBC,ADDC,∠BAD=m°m>90,BC、CD上分別找一點(diǎn)MN,當(dāng)△AMN周長最小時,∠AMN+ANM的度數(shù)是_______(用m來表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值

1)(1+2x)(12x)﹣(x32+5xx1),其中x=﹣2

2[2xy2﹣(2x+y)(x2y]÷4y,其中x=﹣8,y1

查看答案和解析>>

同步練習(xí)冊答案