【題目】已知A、B在數(shù)軸上分別表示a,b.
(1)對(duì)照數(shù)軸填寫(xiě)下表:
a | 6 | -6 | -6 | -6 | 2 | -1.5 |
b | 4 | 0 | 4 | -4 | -10 | -1.5 |
A、B兩點(diǎn)的距離 |
(2)若A、B兩點(diǎn)間的距離記為d,試問(wèn):d和a,b有何數(shù)量關(guān)系?
(3)在數(shù)軸上找出所有符合條件的整數(shù)點(diǎn)P,使它到5和-5的距離之和為10,并求所有這些整數(shù)的和;
(4)若點(diǎn)C表示的數(shù)為x,當(dāng)點(diǎn)C在什么位置時(shí),取得的值最小? 最小值是多少?
【答案】(1)2,6,10,2,12,0;(2);(3)0;(4)點(diǎn)C在-1和2之間時(shí),取得最小值為3
【解析】
(1)根據(jù)數(shù)軸上的兩點(diǎn),求兩點(diǎn)距離即可;
(2)數(shù)軸上兩點(diǎn)間的距離即為差的絕對(duì)值;
(3)到兩定點(diǎn)距離之和等于兩定點(diǎn)之間的距離的點(diǎn)的集合是兩定點(diǎn)之間的連線,即可得解;
(4)表示x到-1的距離,同理表示x到2的距離,該題及轉(zhuǎn)化為數(shù)軸上一點(diǎn)到-1和2的距離和最小.
(1)由題意,得
A、B兩點(diǎn)間的距離依次為:2,6,10,2,12,0;
(2)由題意,得
(3)到兩定點(diǎn)距離之和等于兩定點(diǎn)之間的距離的點(diǎn)的集合是兩定點(diǎn)之間的連線
故p點(diǎn)一定在5和-5之間
這樣的整數(shù)點(diǎn)有1,2,3,4,5,-5,-4,-3,-2,-1,0
故它們的和為0;
(4)由題意,得
表示x到-1的距離,同理表示x到2的距離,
∴點(diǎn)C在-1和2之間時(shí),取得最小值,最小值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,點(diǎn)是直線上一個(gè)動(dòng)點(diǎn)(不與重合),點(diǎn)是邊上一個(gè)定點(diǎn), 過(guò)點(diǎn)作,交直線于點(diǎn),連接,過(guò)點(diǎn)作,交直線于點(diǎn).
如圖①,當(dāng)點(diǎn)在線段上時(shí),求證:.
在的條件下,判斷這三個(gè)角的度數(shù)和是否為一個(gè)定值? 如果是,求出這個(gè)值,如果不是,說(shuō)明理由.
如圖②,當(dāng)點(diǎn)在線段 的延長(zhǎng)線上時(shí),(2)中的結(jié)論是否仍然成立?如果不成立, 請(qǐng)直接寫(xiě)出之間的關(guān)系.
)當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),(2)中的結(jié)論是否仍然成立?如果不成立,請(qǐng)直接 寫(xiě)出之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題8分)已知:如圖,△ABC中,D是AB的中點(diǎn),E是AC上一點(diǎn),EF∥AB,DF∥BE.
(1)猜想:DF與AE的關(guān)系是______.
(2)試說(shuō)明你猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=a(x﹣m)2﹣a(x﹣m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個(gè)公共點(diǎn);
(2)設(shè)該函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1 , 0),B(x2 , 0),且x12+x22=25,求m的值;
(3)設(shè)該函數(shù)的圖象的頂點(diǎn)為C,與x軸交于A,B兩點(diǎn),且△ABC的面積為1,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)三角形知識(shí)時(shí),發(fā)現(xiàn)如下三個(gè)有趣的結(jié)論:在中,,平分,為直線上一點(diǎn),,為垂足,的平分線交直線于點(diǎn),回答下列問(wèn)題并說(shuō)明.(可在圖上標(biāo)注數(shù)字角)
(1)如圖①,為邊上一點(diǎn),則、的位置關(guān)系是________.請(qǐng)給予證明;
(2)如圖②,為邊反向延長(zhǎng)線上一點(diǎn),則、的位置關(guān)系是________.(請(qǐng)直接寫(xiě)出結(jié)論)
(3)如圖③,為邊延長(zhǎng)線上一點(diǎn),則、的位置關(guān)系是________.請(qǐng)給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形AB1C1D1的邊長(zhǎng)為1,∠B1=60°;作AD2⊥B1C1于點(diǎn)D2 , 以AD2為一邊,做第二個(gè)菱形AB2C2D2 , 使∠B2=60°;作AD3⊥B2C2于點(diǎn)D3 , 以AD3為一邊做第三個(gè)菱形AB3C3D3 , 使∠B3=60°…依此類推,這樣做的第n個(gè)菱形ABnCnDn的邊ADn的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖1,AB∥CD,∠PAB=135°,∠PCD=125°.求∠APC度數(shù).小明的思路是:如圖2,過(guò)P作PE∥AB,通過(guò)平行線性質(zhì),可求得∠APC的度數(shù).請(qǐng)寫(xiě)出具體求解過(guò)程.
問(wèn)題遷移:
(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫(xiě)出∠CPD、∠α、∠β間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用長(zhǎng)為 的鋁合金條制成“日”字形窗框,若窗框的寬為 ,窗戶的透光面積為 (鋁合金條的寬度不計(jì)).
(Ⅰ)求出 與 的函數(shù)關(guān)系式;
(Ⅱ)如何安排窗框的長(zhǎng)和寬,才能使得窗戶的透光面積最大?并求出此時(shí)的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=﹣x+8與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,M是OB上的一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)B′處,則直線AM的函數(shù)解析式是( 。
A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com