【題目】已知點M(n,﹣n )在第二象限,過點M的直線y=kx+b(0<k<1)分別交x軸、y軸于點A,B,過點M作MN⊥x軸于點N,則下列點在線段AN的是( 。
A. ((k﹣1)n,0) B. ((k+)n,0)) C. (,0) D. ((k+1)n,0)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲騎電瓶車,乙騎自行車從相距17km的兩地相向而行.
(1)甲、乙同時出發(fā)經(jīng)過0.5h相遇,且甲每小時行程是乙每小時行程的3倍少6km.求乙騎自行車的速度.
(2)若甲、乙騎行速度保持與(1)中的速度相同,乙先出發(fā)0.5h,甲才出發(fā),問甲出發(fā)幾小時后兩人相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】①若,則;②整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù);③絕對值等于它本身的整數(shù)是0;④是二次三項式;⑤幾個有理數(shù)相乘,當(dāng)負(fù)因數(shù)的個數(shù)是奇數(shù)時,積一定為負(fù)數(shù),其中判斷正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一張邊長為的正方形紙片,點為正方形邊上的一點(不與點,點重合)將正方形紙片折疊,使點落在邊上的處,點落在處,交于,折痕為,連接,.則的周長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陸老師去水果批發(fā)市場采購蘋果,他看中了A,B兩家蘋果,這兩家蘋果品質(zhì)一樣,零售價都我6元/千克,批發(fā)價各不相同.
A家規(guī)定:批發(fā)數(shù)量不超過1000千克,按零售價的92%優(yōu)惠;批發(fā)數(shù)量不超過2000千克,按零售價的90%優(yōu)惠;超過2000千克的按零售價的88%優(yōu)惠.
B家的規(guī)定如下表:
數(shù)量范圍(千克) | 0~500部分 | 500以上~1500 | 1500以上~2500部分 | 2500以上部分 |
價格補貼 | 零售價的95% | 零售價的85% | 零售價的75% | 零售價的70% |
(1)如果他批發(fā)700千克蘋果,則他在A、B兩家批發(fā)分別需要多少元?
(2)如果他批發(fā)x千克蘋果(1500<x<2000),請你分別用含x的代數(shù)式表示他在A、B兩家批發(fā)所需的費用;
(3)A、B兩店在互相競爭中開始了互懟,B說A店的蘋果總價有不合理的,有時候買的少反而貴,忽悠消費者;A說B的總價計算太麻煩,把消費者都弄糊涂了;旁邊陸老師聽完,提出兩個問題希望同學(xué)們幫忙解決:
問題1:能否舉例說明A店買的多反而便宜?
問題2:B店老板比較聰明,在平時工作中發(fā)現(xiàn)有巧妙的方法:總價=購買數(shù)量×單價+價格補貼;
注:不同的單價,補貼價格也不同;只需提前算好即可填下表:
數(shù)量范圍(千克) | 0~500部分 | 500以上~1500 | 1500以上~2500 | 2500以上部分 |
價格補貼 | 0元 | 300 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是正方形的對角線上一點,于點,于點,連接.給出下列五個結(jié)論:①;②一定是等腰直角三角形;③一定是等腰三角形;④;⑤.其中正確結(jié)論的序號是( )
A. ①②③④B. ①②④⑤C. ②③④⑤D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點C與點F重合時停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把長為20,寬為a的長方形紙片(10<a<20),如圖那樣折一下,剪下一個邊長等于長方形寬度的正方形(稱為第一次操作);再把剩下的長方形如圖那樣折一下,剪下一個邊長等于此時長方形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去,若在第n次操作后,剩下的長方形為正方形,則操作停止.當(dāng)n=3時,a的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a>0)與x軸相交于點A(﹣1,0)和點B,與y軸交于點C,對稱軸為直線x=1.
(1)求點C的坐標(biāo)(用含a的代數(shù)式表示);
(2)聯(lián)結(jié)AC、BC,若△ABC的面積為6,求此拋物線的表達(dá)式;
(3)在第(2)小題的條件下,點Q為x軸正半軸上一點,點G與點C,點F與點A關(guān)于點Q成中心對稱,當(dāng)△CGF為直角三角形時,求點Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com