【題目】如圖,在矩形ABCD中,AB3cmAD4cm,EF經(jīng)過對角線BD的中點O,分別交AD,BC于點EF

1)求證:△BOF≌△DOE;

2)當(dāng)EFBD時,求AE的長.

【答案】1)見解析;(2.

【解析】

1)根據(jù)已知條件易證∠BFO=∠DEO,∠FBO=∠EDOOBOD,再利用AAS證明△BOF≌△DOE即可;(2)連接BE,設(shè)AExcm,由EBEDADAE=(4xcm,在RtABE中,根據(jù)AB2+AEBE2,構(gòu)建方程即可解決問題.

1)證明:∵四邊形ABCD是矩形,

ADBC,

∴∠BFO=∠DEO,∠FBO=∠EDO,

又∵OBD中點,

OBOD,

∴△BOF≌△DOEASA).

2)連接BE

EFBDOBD中點,

EBED,

設(shè)AExcm,由EBEDADAE=(4xcm,

RtABE中,AB3cm,

根據(jù)勾股定理得:AB2+AEBE2,即9+x2=(4x2,

解得:x,

AE的長是 cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蘇果超市用5000元購進(jìn)一批新品種的蘋果進(jìn)行試銷,由于試銷狀況良好,超市又調(diào)撥11000元資金購進(jìn)該種蘋果,但這次的進(jìn)價比試銷時每千克多了0.5元,購進(jìn)蘋果的數(shù)量是試銷時的2倍。

(1)試銷時該品種蘋果的進(jìn)價是每千克多少元?

(2)如果超市將該品種的蘋果按每千克7元定價出售,當(dāng)大部分蘋果售出后,余下的400千克按定價的七折售完,那么超市在這兩次蘋果銷售中共盈利多少元?(7分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:

①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;

②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;

③作AP射線,交邊CD于點Q

QC1,BC3,則平行四邊形ABCD周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明隨機調(diào)查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0t10,B:10t20,C:20t30,D:t30),根據(jù)圖中信息,解答下列問題:

(1)這項被調(diào)查的總?cè)藬?shù)是多少人?

(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補全條形統(tǒng)計圖;

(3)如果小明想從D組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC8,把△ABC沿著AC向上翻折得到△AEC,ECAD邊于點F,則點FAC的距離是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊等邊三角形的廢鐵片,其中AB=AC=10,BC=12.利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F G分別落在AC、AB上.

1)小聰想:要畫出正方形DEFG,只要能計算出正方形的邊長就能求出BDCE的長,從而確定D點和E點,再畫正方形DEFG就容易了.請你幫小聰求出正方形的邊長.

2)小明想:不求正方形的邊長也能畫出正方形.具體作法是:

①在AB邊上任取一點G′,如圖2作正方形G′D′E′F′;

②連接BF′并延長交AC于點F;

③過點FFEF′E′BC于點E,FGF′G′AB于點G,GDG′D′BC于點D,則四邊形DEFG即為所求的正方形.你認(rèn)為小明的作法正確嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB10cm,弦AC6cm,

1)用尺規(guī)作圖畫出∠ACB的平分線交⊙O于點D.(不要寫作法,保留作圖痕跡)

2)分別連接點ADBD,求弦BC、ADBD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)公,作為運城乃至山西的一張名片,吸引了來自世界各地的游客,在運城西南公里的常平村(關(guān)公故鄉(xiāng))南山上,有一尊巨型關(guān)公銅像,高米,象征關(guān)公享年歲,底座的高度也有一定寓意.有一位游客,對此產(chǎn)生了興趣,想測量它的高度,由于游客無法直接到達(dá)銅像底部,因此該游客計劃借助坡面高度來測量它的高度.如圖,代表底座的高,坡頂與底座底部處在同一水平面上,該游客在斜坡底處測得該底座頂端的仰角為,然后他沿著坡度為的斜坡攀行了米,在坡頂處又測得該底座頂端的仰角為.求:

坡頂到地面的距離;

求底座的高度(結(jié)果精確到)

(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一座人行天橋的引橋部分的示意圖,梯面AD、BE相互平行,且與地面成37°的夾角,DE是一段水平歇臺,離地面高度3米.已知天橋高度BC4.8米,引橋水平跨度AC8米,求梯面AD、BE及歇臺DE的長.(參考數(shù)據(jù):,結(jié)果保留兩位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案