【題目】在Rt△ABC中,∠ACB=90°,tan∠BAC=. 點D在邊AC上(不與A,C重合),連結(jié)BD,F為BD中點.
(1)若過點D作DE⊥AB于E,連結(jié)CF、EF、CE,如圖1.設(shè),則k= ;
(2)若將圖1中的△ADE繞點A旋轉(zhuǎn),使得D、E、B三點共線,點F仍為BD中點,如圖2所示.求證:BE-DE=2CF;
(3)若BC=6,點D在邊AC的三等分點處,將線段AD繞點A旋轉(zhuǎn),點F始終為BD中點,求線段CF長度的最大值.
【答案】(1)k=1(2)證明,則可得. (3)當(dāng)點D在靠近點C的
三等分點時,線段CF的長度取得最大值為
【解析】試題分析:解:(1)k=1; .
(2)如圖2,過點C作CE的垂線交BD于點G,設(shè)BD與AC的交點為Q.
由題意,tan∠BAC=,
∴.
∵D、E、B三點共線,
∴AE⊥DB.
∵∠BQC=∠AQD,∠ACB=90°,
∴∠QBC=∠EAQ.
∵∠ECA+∠ACG=90°,∠BCG+∠ACG=90°,
∴∠ECA=∠BCG.
∴.
∴.
∴GB=DE.
∵F是BD中點,
∴F是EG中點.
在中, ,
∴. . .
(3)情況1:如圖,當(dāng)AD= 時,取AB的中點M,連結(jié)MF和CM,
∵∠ACB=90°, tan∠BAC=,且BC= 6,
∴AC=12,AB=.
∵M為AB中點,∴CM=,
∵AD= ,
∴AD=.
∵M為AB中點,F為BD中點,
∴FM= = 2.
∴當(dāng)且僅當(dāng)M、F、C三點共線且M在線段CF上時CF最大,此時CF=CM+FM=.
情況2:如圖,當(dāng)AD= 時,取AB的中點M,連結(jié)MF和CM,
類似于情況1,可知CF的最大值為.
. 6分
綜合情況1與情況2,可知當(dāng)點D在靠近點C的
三等分點時,線段CF的長度取得最大值為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)七年級開展演講比賽,學(xué)校決定購買一些筆記本和鋼筆作為獎品.現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的筆記本和鋼筆.筆記本定價為每本20元,鋼筆每支定價5元,經(jīng)洽談后,甲店每買一本筆記本贈一支鋼筆;乙店全部按定價的9折優(yōu)惠.七年級需筆記本20本,鋼筆若干支(不小于20支).問:
(1)如果購買鋼筆(不小于20)支,則在甲店購買需付款 ______ 元,在乙店購買需付款 _______________ 元.(用x的代數(shù)式表示)
(2)當(dāng)購買鋼筆多少支時,在兩店購買付款一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩座建筑物的水平距離為,從甲的頂部處測得乙的頂部處的俯角為48°,測得底部處的俯角為58°,求乙建筑物的高度.(參考數(shù)據(jù):,,,.結(jié)果取整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是內(nèi)任意一點,,點和點分別是射線和射線上的動點周長的最小值是,則的度數(shù)是( )
A. 25度 B. 30度 C. 35度 D. 40度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,的平分線AE交CD于點F交BC的延長線于點E.
(1)求證:;
(2)連接BF、AC、DE,當(dāng)時,求證:四邊形ACED是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個有進水管與出水管的容器,從某時刻開始的4分內(nèi)只進水不出水,在隨后的若干分內(nèi)既進水又出水,之后只有出水不進水,每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量(單位:升)與時間(單位:分)之間的關(guān)系如圖所示,則進水速度是______升/分,出水速度是______升/分,的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平畫直角坐標(biāo)系中,直線交軸于點,交軸于點,將直線沿軸向右平移2個單位長度交軸于,交軸于,交直線于.
(1)直接寫出直線的解析式為______,______.
(2)在直線上存在點,使是的中線,求點的坐標(biāo);
(3)如圖2,在軸正半軸上存在點,使,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定,若關(guān)于 x 的一元一次方程 ax=b 的解為 x=ba,則稱該方程的為差解方程,例如:3x=的解為x= 且=-3,則該方程3x=就是差解方程.
請根據(jù)以上規(guī)定解答下列問題
(1)若關(guān)于 x 的一元一次方程-5x=m+1 是差解方程,則 m=_____.
(2)若關(guān)于 x 的一元一次方程 2x=ab+3a+1 是差解方程,且它的解為 x=a,求代數(shù)式(ab+2)2019的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”是指“絲綢之路經(jīng)濟帶”和“21世紀(jì)海上絲綢之路”的簡稱.數(shù)學(xué)興趣小組設(shè)計了一個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤,轉(zhuǎn)盤被分成相等的4份,且每份分別標(biāo)有“一”、“帶”、“一”、“路”的字.任意轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針都會指向其中的一個字(如果指針恰好停在等分線上,那么重新轉(zhuǎn)一次,直到指針指向轉(zhuǎn)盤中四等份中的某一份為止)
(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求指針恰好指到“一”字的概率;
(2)連續(xù)轉(zhuǎn)動轉(zhuǎn)盤兩次,請用列表或者畫樹狀圖的方法求指針兩次都指向“一”字的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com