【題目】(1)計算:(﹣)﹣2﹣6sin30°﹣(π﹣3.14)0﹣|﹣1|
(2)解不等式組:,并求出所有整數(shù)解之和.
【答案】(1);(2)﹣3<x≤1,所有整數(shù)解的和:-2
【解析】
(1)分別根據(jù)0指數(shù)冪及負整數(shù)指數(shù)冪的計算法則、特殊角的三角函數(shù)值及絕對值的性質分別計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可;
(2)求出每個不等式的解集,再確定其公共解,得到不等式組的整數(shù)解,求其和即可.
(1)(﹣)﹣2﹣6sin30°﹣(π﹣3.14)0﹣|﹣1|
=4﹣6×﹣1﹣(﹣1)
=4﹣3﹣1﹣+1
=1﹣;
(2)
解不等式①得:,
解不等式②得:,
∴原不等式組的解集是:,
∴原不等式組的整數(shù)解是﹣2,﹣1,0,1,
∴所有整數(shù)解的和:.
科目:初中數(shù)學 來源: 題型:
【題目】某水果店在兩周內(nèi),將標價為10元/斤的某種水果,經(jīng)過兩次降價后的價格為8.1元/斤,并且兩次降價的百分率相同.
(1)求該種水果每次降價的百分率;
(2)從第一次降價的第1天算起,第天(為整數(shù))的售價、銷量及儲存和損耗費用的相關信息如表所示.
時間(天) | ||
售價(元/斤) | 第1次降價后的價格 | 第2次降價后的價格 |
銷量(斤) | ||
儲存和損耗費用(元) |
已知該種水果的進價為4.1元/斤,設銷售該水果第(天)的利潤為(元),求與()之間的函數(shù)解析式,并求出第幾天時銷售利潤最大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設計出來;
(2)設生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關系式,并利用函數(shù)的性質說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解全校學生上學的交通方式,該校九年級(8)班的4名同學聯(lián)合設計了一份調查問卷,對該校部分學生進行了隨機調查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式) 設置選項,要求被調查同學從中單選.并將調查結果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息, 解答下列問題:
(1)本次接受調查的總人數(shù)是 人, 并把條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中,“步行”的人數(shù)所占的百分比是 ,“其他方式”所在扇形的圓心角度數(shù)是 ;
(3)已知這4名同學中有2名女同學,要從中選兩名同學匯報調查結果.請你用列表法或畫樹狀圖的方法, 求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,點P是△ACD內(nèi)一點,連接PA、PC、PD,若PA=5,PD=12,PC=13,則ACBD=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過A(﹣3,m),B(5,m),C(0,m+2),D(﹣1,y1),E(﹣5,y2),F(6,y3),則函數(shù)值y1,y2,y3的大小關系是( )
A.y2<y3<y1B.y3<y1<y2C.y2<y1<y3D.y1<y3<y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,且當x=﹣1和x=3時,y值相等.直線y=與拋物線有兩個交點,其中一個交點的橫坐標是6,另一個交點是這條拋物線的頂點M.
(1)求這條拋物線的表達式.
(2)動點P從原點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B運動,同時點Q從點B出發(fā),在線段BC上以每秒2個單位長度的速度向點C運動,當一個點到達終點時,另一個點立即停止運動,設運動時間為t秒.
①求t的取值范圍.
②若使△BPQ為直角三角形,請求出符合條件的t值;
③t為何值時,四邊形ACQP的面積有最小值,最小值是多少?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣﹣x+4,
(1)用配方法確定它的頂點坐標、對稱軸;
(2)x取何值時,y隨x增大而減小?
(3)x取何值時,拋物線在x軸上方?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com