【題目】1)計算:(﹣26sin30°﹣(π3.140﹣|1|

2)解不等式組:,并求出所有整數(shù)解之和.

【答案】1;(2)﹣3x1,所有整數(shù)解的和:-2

【解析】

(1)分別根據(jù)0指數(shù)冪及負整數(shù)指數(shù)冪的計算法則、特殊角的三角函數(shù)值及絕對值的性質分別計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可;

(2)求出每個不等式的解集,再確定其公共解,得到不等式組的整數(shù)解,求其和即可.

(1)(﹣)26sin30°﹣(π3.14)0﹣|1|

=46×1﹣(1)

=431+1

=1

(2)

解不等式①得:,

解不等式②得:,

∴原不等式組的解集是:

∴原不等式組的整數(shù)解是﹣2,﹣1,01,

∴所有整數(shù)解的和:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某水果店在兩周內(nèi),將標價為10/斤的某種水果,經(jīng)過兩次降價后的價格為8.1/斤,并且兩次降價的百分率相同.

1)求該種水果每次降價的百分率;

2)從第一次降價的第1天算起,第天(為整數(shù))的售價、銷量及儲存和損耗費用的相關信息如表所示.

時間(天)

售價(元/斤)

1次降價后的價格

2次降價后的價格

銷量(斤)

儲存和損耗費用(元)

已知該種水果的進價為4.1/斤,設銷售該水果第(天)的利潤為(元),求)之間的函數(shù)解析式,并求出第幾天時銷售利潤最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設計出來;

(2)設生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關系式,并利用函數(shù)的性質說明那種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解全校學生上學的交通方式,該校九年級(8)班的4名同學聯(lián)合設計了一份調查問卷,對該校部分學生進行了隨機調查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式) 設置選項,要求被調查同學從中單選.并將調查結果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息, 解答下列問題:

1)本次接受調查的總人數(shù)是 人, 并把條形統(tǒng)計圖補充完整;

2)在扇形統(tǒng)計圖中,步行的人數(shù)所占的百分比是 ,其他方式所在扇形的圓心角度數(shù)是 ;

3)已知這4名同學中有2名女同學,要從中選兩名同學匯報調查結果.請你用列表法或畫樹狀圖的方法, 求出恰好選出1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠B60°,點P是△ACD內(nèi)一點,連接PA、PC、PD,若PA5,PD12PC13,則ACBD_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a≠0,在同一直角坐標系中,函數(shù)y=axy=ax2的圖象有可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象過A(﹣3,m),B5,m),C0m+2),D(﹣1y1),E(﹣5y2),F6,y3),則函數(shù)值y1y2,y3的大小關系是(  )

A.y2y3y1B.y3y1y2C.y2y1y3D.y1y3y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點(A在點B左側),與y軸交于點C,且當x=﹣1x3時,y值相等.直線y與拋物線有兩個交點,其中一個交點的橫坐標是6,另一個交點是這條拋物線的頂點M

(1)求這條拋物線的表達式.

(2)動點P從原點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B運動,同時點Q從點B出發(fā),在線段BC上以每秒2個單位長度的速度向點C運動,當一個點到達終點時,另一個點立即停止運動,設運動時間為t秒.

①求t的取值范圍.

②若使△BPQ為直角三角形,請求出符合條件的t值;

t為何值時,四邊形ACQP的面積有最小值,最小值是多少?直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x+4,

1)用配方法確定它的頂點坐標、對稱軸;

2x取何值時,yx增大而減小?

3x取何值時,拋物線在x軸上方?

查看答案和解析>>

同步練習冊答案