【題目】已知,如圖AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,請判斷AB與EF的位置關(guān)系,并說明理由.
解:理由如下:
∵AB∥CD
∴∠B=∠BCD .
∵∠B=80°,
∴∠BCD=80° .
∵∠BCE=20°,
∴∠ECD=100°,
又∵∠CEF=80°
∴ + =180°,
∴EF∥
又∵AB∥CD,
∴AB∥EF .
【答案】AB∥EF,理由見解析;填空答案:AB∥EF,兩直線平行,內(nèi)錯角相等;等量代換,∠E,∠DCE,CD,同旁內(nèi)角互補(bǔ),兩直線平行;平行于同一直線的兩條直線互相平行.
【解析】
根據(jù)平行線的性質(zhì),可得∠BCD=80°,進(jìn)而可得到∠E+∠ECD=180°,可證明EF∥CD,由平行的“傳遞性”可證明結(jié)論.
AB∥EF,理由如下:
∵AB∥CD,
∴∠B=∠BCD,(兩直線平行,內(nèi)錯角相等)
∵∠B=80°,
∴∠BCD=80°,(等量代換)
∵∠BCE=20°,
∴∠ECD=100°,
∵∠CEF=80°,
∴∠E+∠DCE=180°,
∴EF∥CD,(同旁內(nèi)角互補(bǔ),兩直線平行)
∴AB∥EF.(平行于同一條直線的兩條直線互相平行)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC先向上平移3個單位長度,再向右平移2個單位長度,得到△A1B1C1.
(1)在圖中畫出△A1B1C1,并寫出點A1、B1、C1的坐標(biāo);
(2)連接A1A、C1C,則四邊形A1ACC1的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分別為A,B.下列結(jié)論中:①PA=PB;②△AOP≌△BOP;③OA=OB;④PO平分∠APB.其中成立的有________(填寫正確的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD 中,∠ADB=90°,點 E 為 AB 邊的中點,點 F 為CD 邊的中點.
(1)求證:四邊形 DEBF 是菱形;
(2)當(dāng)∠A 等于多少度時,四邊形 DEBF 是正方形?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個整數(shù)點,其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根據(jù)這個規(guī)律探究可得,第100個點的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,邊形為菱形,點為對角線上的一個動點,連接并延長交于點,連接.
(1)如圖1,求證:;
(2)如圖2,若,且,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一邊是另一邊的倍的三角形叫做智慧三角形,這兩邊中較長邊稱為智慧邊,這兩邊的 夾角叫做智慧角.
(1)在 Rt△ABC 中,∠ACB=90°,若∠A 為智慧角,則∠B 的度數(shù)為 ;
(2)如圖①,在△ABC 中,∠A=45°,∠B=30°,求證:△ABC 是智慧三角形;
(3)如圖②,△ABC 是智慧三角形,BC 為智慧邊,∠B 為智慧角,A(3,0),點 B,C 在函數(shù) y= (x>0)的圖像上,點 C 在點 B 的上方,且點 B 的縱坐標(biāo)為.當(dāng)△ABC是直角三角形時,求 k 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸的兩個交點分別為A(﹣3,0),B(1,0),與y軸的交點為D,對稱軸與拋物線交于點C,與x軸負(fù)半軸交于點H.
(1)求拋物線的表達(dá)式;
(2)點E,F(xiàn)分別是拋物線對稱軸CH上的兩個動點(點E在點F上方),且EF=1,求使四邊形BDEF的周長最小時的點E,F(xiàn)坐標(biāo)及最小值;
(3)如圖2,點P為對稱軸左側(cè),x軸上方的拋物線上的點,PQ⊥AC于點Q,是否存在這樣的點P使△PCQ與△ACH相似?若存在請求出點P的坐標(biāo),若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com