【題目】如圖,已知A(-4,n)、B(2,-6)是一次函數(shù)y1=k1x+b與反比例函數(shù)y2=的兩個交點,直線AB與x軸交于點C。
(1)求兩函數(shù)解析式;(2)求△AOB的面積;
(3)根據(jù)圖象回答:y1<y2時,自變量x的取值范圍。
【答案】(1), (2)9(3)當-4<x<0或x>2時,y1<y2
【解析】試題分析:(1)把A(-4,n),B(2,-6)分別代入一次函數(shù)y1=k1x+b與反比例函數(shù)y2=,運用待定系數(shù)法分別求其解析式即可;
(2)把三角形AOB的面積看成是三角形AOC和三角形OCB的面積之和進行計算;
(3)根據(jù)AB兩點的坐標利用數(shù)形結(jié)合的方法比較y1與y2的大小關(guān)系即可.
試題解析:(1)把B(2,-6)代入y2=得k2=-12, 則反比例函數(shù)解析式為,
把A(-4,3)、B(2,-6)代入y1=k1x+b得 ,解得 ,
則一次函數(shù)解析式為;
(2)在中,當y=0時,x=-2,
∴OC=2,
∵A(-4,3),B(2,-6),
∴ =9;
(3)由圖可得,當-4<x<0或x>2時,y1<y2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸相交于O、A兩點(其中O為坐標原點),過點P(2,2a)作直線PM⊥x軸于點M,交拋物線于點B,點B關(guān)于拋物線對稱軸的對稱點為C(其中B、C不重合),連接AP交y軸于點N,連接BC和PC.
(1)時,求拋物線的解析式和BC的長;
(2)如圖時,若AP⊥PC,求的值;
(3)是否存在實數(shù),使,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級教師對試卷講評課中學(xué)生參與的深度與廣度進行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項:評價組隨機抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了________名學(xué)生;
(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為________度;
(3)請將頻數(shù)分布直方圖補充完整;
(4)如果全市有8600名七年級學(xué)生,那么在試卷評講課中,“獨立思考”的七年級學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)的圖象交于C、D兩點,DE⊥x軸于點E.已知C點的坐標是(6,),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)根據(jù)圖象直接回答:當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,試問與平行嗎?為什么?
下面是說明的過程,請在( )內(nèi)寫上理由.
解:,( )
( )
又, (等量代換)
( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點B(-2,0),點C(8,0),與y軸交于點A.
(1)求二次函數(shù)y=ax2+bx+4的表達式;
(2)連接AC,AB,若點N在線段BC上運動(不與點B,C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求N點的坐標;
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與雙曲線相交于點A(m,3),與x軸交于點C.
(1)求雙曲線解析式;
(2)點P在x軸上,如果△ACP的面積為3,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=3,CD=4,點P是AC上一個動點(點P與點A,C不重合),過點P分別作PE⊥BC于點E,PF∥BC交AB于點F,連接EF,則EF的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com