【題目】通過對下面數(shù)學(xué)模型的研究學(xué)習(xí),解決下列問題:

(模型呈現(xiàn))

(1)如圖1,,,過點于點,過點于點.,得.,可以推理得到.進而得到_____,_____.我們把這個數(shù)學(xué)模型稱為模型或一線三等角模型;

(模型應(yīng)用)

(2)①如圖2,,,連接,,且于點,與直線交于點.求證:點的中點.

②如圖3,在平面直角坐標(biāo)系中,點為平面內(nèi)任一點,點的坐標(biāo)為.是以為斜邊的等腰直角三角形,請直接寫出點的坐標(biāo).

【答案】(1)DE,AE;(2)①證明見解析;②點A坐標(biāo)為(,)(,).

【解析】

一線三等角必有全等三角形,通過等角的余角相等找對應(yīng)關(guān)系求證全等即可.

(1)DE,AE;

(2)①如圖所示,作DMHG于點M,作ENHG于點N,則EN=HA,DM=HA.

∵∠ENG=DMG=90°,∠NGE=MGDEN=DM=HA,

∴△ENG≌△PMG,

EG=GD

GED中點.

A坐標(biāo)為(,)().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A(1)在射線OM上,點B(,3)在射線ON上,以AB為直角邊作RtABA1,以BA1為直角邊作第二個RtBA1B1,以A1B1為直角邊作第三個RtA1B1A2,,依此規(guī)律,得到RtB2018A2019B2019,則點B2019的縱坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是以∠C為直角的直角三角形,且BC=1,AC=,圓O是△ABC的外接圓,過△ABC的內(nèi)角∠C作角平分線交AB于點D,交圓O與點E,連接AE,

(1)求AE的長.

(2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組對函數(shù)y=|x|-2的圖象特征進行了探究,探究過程如下:

⑴自變量x的取值范圍是全體實數(shù),xy的幾組對應(yīng)值如下:

x

-3

-2

-1

0

1

2

3

4

y

1

m

-1

-2

n

0

1

2

其中,m= n= .

⑵根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出函數(shù)圖象;

⑶觀察函數(shù)圖象,寫出一條特征: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,

(1)過點AAB的垂線與∠B的平分線相交于點D

(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若∠A=30°,AB=2,則△ABD的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+3過等腰Rt△BOC的兩頂點B、C,且與x軸交于點A(﹣1,0).

(1)求拋物線的解析式;

(2)拋物線的對稱軸與直線BC相交于點M,點Nx軸上一點,當(dāng)以M,N,B為頂點的三角形與△ABC相似時,求BN的長度;

(3)P為線段BC上方的拋物線上的一個動點,P到直線BC的距離是否存在最大值?若存在,請求出這個最大值的大小以及此時點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校團委組織陽光助殘獻愛心捐款活動,九年級(2)班學(xué)生捐款如表:

捐款金額(元)

5

10

15

20

人數(shù)(人)

13

16

17

10

學(xué)生捐款的中位數(shù)和眾數(shù)是(  )

A. 10元,15 B. 15元,15 C. 10元,20 D. 16元,17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,OC OD,OC OD DC 的延長線交 y 軸正半軸上點 B ,過點C CA BD x 軸負半軸于點A

1)如圖1,求證:OAOB

2)如圖1,連AD,作OM ACAD于點M,求證: BC 2OM

3)如圖2,點EOC 的延長線上一點,連DE,過點DDFDEDF DE ,連CF DO 的延長線于點G OG 4,求CE 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長方形紙片ABCD中,AB=m,AD=n,將兩張邊長分別為64的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2

1)在圖1中,EF=___,BF=____;(用含m的式子表示)
2)請用含m、n的式子表示圖1,圖2中的S1,S2,若m-n=2,請問S2-S1的值為多少?

查看答案和解析>>

同步練習(xí)冊答案