甲、乙、丙三人同時從A村出發(fā)去B村,剛開始甲騎自行車載乙,丙步行;a小時后甲騎車中途回頭接丙,乙步行,結(jié)果三人同時到達(dá)B地.假設(shè):乙、丙步行速度相同,甲載乙與甲載丙時速度相同,甲載人與不載人時的速度不同,甲、乙、丙三人與A村之間的距離y(千米)與出發(fā)的時間x(小時)之間的函數(shù)關(guān)系如圖.(掉頭與上下車時間忽略不計)

(1)

甲與A村之間的距離y(千米)與出發(fā)時間x(小時)之間的函數(shù)圖像為折線

[  ]

A.

O-M-P

B.

O-N-P

C.

O-M-N-P

D.

O-N-M-P

(2)

乙與A村之間的距離y(千米)與出發(fā)時間x(小時)之間的函數(shù)圖像為折線,

[  ]

A.

O-M-P

B.

O-N-P

C.

O-M-N-P

D.

O-N-M-P

(3)

丙與A村之間的距離y(千米)與出發(fā)時間x(小時)之間的函數(shù)圖像為折線.

[  ]

A.

O-M-P

B.

O-N-P

C.

O-M-N-P

D.

O-N-M-P

(4)

求步行速度,和甲載人騎車時的速度.

(5)

求a的值以及甲騎車走過的總路程.(寫出必要的演算和推理過程)

答案:1.C;2.A;3.B;
解析:

(4)

3千米/小時 12千米/小時

(5)

a= 總路程10·5


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人同時從A村出發(fā)去B村,剛開始甲騎自行車載乙,丙步行;a小時后甲騎車中途回頭接丙,乙步行,結(jié)果三人同時到達(dá)B地.假設(shè):乙、丙步行速度相同,甲載乙與甲載丙時速度相同,甲載人與不載人時的速度不同,甲、乙、丙三人與A村之間的距離y(千米)與出發(fā)的時間x(小時)之間的函數(shù)關(guān)系如圖.(掉頭與上下車時間忽略不計)
精英家教網(wǎng)
(1)選擇:
甲與A村之間的距離y(千米)與出發(fā)時間x(小時)之間的函數(shù)圖象為折線(
 

A、O-M-P     B、O-N-P     C、O-M-N-P     D、O-N-M-P
乙與A村之間的距離y(千米)與出發(fā)時間x(小時)之間的函數(shù)圖象為折線(
 

A、O-M-P     B、O-N-P     C、O-M-N-P     D、O-N-M-P
丙與A村之間的距離y(千米)與出發(fā)時間x(小時)之間的函數(shù)圖象為折線(
 

A、O-M-P     B、O-N-P     C、O-M-N-P     D、O-N-M-P
(2)求步行速度,和甲載人騎車時的速度;
(3)求a的值以及甲騎車走過的總路程.(寫出必要的演算和推理過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省泰州市姜堰市九年級(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

甲、乙、丙三人同時從A村出發(fā)去B村,剛開始甲騎自行車載乙,丙步行;a小時后甲騎車中途回頭接丙,乙步行,結(jié)果三人同時到達(dá)B地.假設(shè):乙、丙步行速度相同,甲載乙與甲載丙時速度相同,甲載人與不載人時的速度不同,甲、乙、丙三人與A村之間的距離y(千米)與出發(fā)的時間x(小時)之間的函數(shù)關(guān)系如圖.(掉頭與上下車時間忽略不計)

(1)選擇:
甲與A村之間的距離y(千米)與出發(fā)時間x(小時)之間的函數(shù)圖象為折線(______)
A、O-M-P     B、O-N-P     C、O-M-N-P     D、O-N-M-P
乙與A村之間的距離y(千米)與出發(fā)時間x(小時)之間的函數(shù)圖象為折線(______)
A、O-M-P     B、O-N-P     C、O-M-N-P     D、O-N-M-P
丙與A村之間的距離y(千米)與出發(fā)時間x(小時)之間的函數(shù)圖象為折線(______)
A、O-M-P     B、O-N-P     C、O-M-N-P     D、O-N-M-P
(2)求步行速度,和甲載人騎車時的速度;
(3)求a的值以及甲騎車走過的總路程.(寫出必要的演算和推理過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人同時從A村出發(fā)去B村,剛開始甲騎自行車載乙,丙步行;小時后甲騎車中途回頭接丙,乙步行,結(jié)果三人同時到達(dá)B地。假設(shè):乙、丙步行速度相同,甲載乙與甲載丙時速度相同,甲載人與不載人時的速度不同,甲、乙、丙三人與A村之間的距離y(千米)與出發(fā)的時間x(小時)之間的函數(shù)關(guān)系如圖。(掉頭與上下車時間忽略不計)

(1)選擇:

甲與A村之間的距離y (千米)與出發(fā)時間x (小時)之間的函數(shù)圖像為折線(     ),

      A.O-M-P           B.O-N-P             C.O-M-N-P         D.O-N-M-P

乙與A村之間的距離y (千米)與出發(fā)時間x (小時)之間的函數(shù)圖像為折線(     ),

A.O-M-P           B.O-N-P             C.O-M-N-P         D.O-N-M-P

丙與A村之間的距離y (千米)與出發(fā)時間x (小時)之間的函數(shù)圖像為折線(     )。

A.O-M-P           B.O-N-P             C.O-M-N-P         D.O-N-M-P

(2)求步行速度,和甲載人騎車時的速度。

(3)求a的值以及甲騎車走過的總路程。(寫出必要的演算和推理過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人同時從A村出發(fā)去B村,剛開始甲騎自行車載乙,丙步行;小時后甲騎車中途回頭接丙,乙步行,結(jié)果三人同時到達(dá)B地。假設(shè):乙、丙步行速度相同,甲載乙與甲載丙時速度相同,甲載人與不載人時的速度不同,甲、乙、丙三人與A村之間的距離y(千米)與出發(fā)的時間x(小時)之間的函數(shù)關(guān)系如圖。(掉頭與上下車時間忽略不計)

(1)選擇:甲與A村之間的距離y (千米)與出發(fā)時間x (小時)之間的函數(shù)圖像為折線(     ),

      A.O-M-P           B.O-N-P             C.O-M-N-P         D.O-N-M-P

乙與A村之間的距離y (千米)與出發(fā)時間x (小時)之間的函數(shù)圖像為折線(     ),

A.O-M-P           B.O-N-P             C.O-M-N-P         D.O-N-M-P

丙與A村之間的距離y (千米)與出發(fā)時間x (小時)之間的函數(shù)圖像為折線(     )。

A.O-M-P           B.O-N-P             C.O-M-N-P         D.O-N-M-P

(2)求步行速度,和甲載人騎車時的速度。

(3)求a的值以及甲騎車走過的總路程。(寫出必要的演算和推理過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人同時從A村出發(fā)去B村,剛開始甲騎自行車載乙,丙步行;小時后甲騎車中途回頭接丙,乙步行,結(jié)果三人同時到達(dá)B地。假設(shè):乙、丙步行速度相同,甲載乙與甲載丙時速度相同,甲載人與不載人時的速度不同,甲、乙、丙三人與A村之間的距離y(千米)與出發(fā)的時間x(小時)之間的函數(shù)關(guān)系如圖。(掉頭與上下車時間忽略不計)

(1)選擇:甲與A村之間的距離y (千米)與出發(fā)時間x (小時)之間的函數(shù)圖像為折線(     ),

      A.O-M-P           B.O-N-P             C.O-M-N-P         D.O-N-M-P

乙與A村之間的距離y (千米)與出發(fā)時間x (小時)之間的函數(shù)圖像為折線(     ),

A.O-M-P           B.O-N-P             C.O-M-N-P         D.O-N-M-P

丙與A村之間的距離y (千米)與出發(fā)時間x (小時)之間的函數(shù)圖像為折線(     )。

A.O-M-P           B.O-N-P             C.O-M-N-P         D.O-N-M-P

(2)求步行速度,和甲載人騎車時的速度。

(3)求a的值以及甲騎車走過的總路程。(寫出必要的演算和推理過程)

查看答案和解析>>

同步練習(xí)冊答案