【題目】請從以下兩個小題中任選一題作答,若多選,則按所選的第一題計(jì)分.
A.正五邊形的一個外角的度數(shù)是 .
B.比較大。2tan71° (填“>”、“=”或“<”)
【答案】72°;<
【解析】解:A.360°÷5=72°.
答:正五邊形的一個外角的度數(shù)是72°.
B.∵2tan71°≈5.808, ≈6.856,
∴2tan71°< .
所以答案是:72°;<.
【考點(diǎn)精析】掌握多邊形內(nèi)角與外角和解直角三角形是解答本題的根本,需要知道多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F是□ABCD對角線AC上的兩點(diǎn),且BE⊥AC,DF⊥AC.
(1)請寫出圖中全等三角形(不再添加輔助線).
(2)求證:△ABE≌△CDF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)
(1)作出△ABC繞點(diǎn)A順時針方向旋轉(zhuǎn)90°后得到的△A1B1C1,并寫出C1點(diǎn)的坐標(biāo) ;
(2)作出△ABC關(guān)于原點(diǎn)O成中心對稱的△A2B2C2,并求出△ABC的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖所示的方式疊放在一起(其中,,;).
(1)①若,則的度數(shù)為_____________;
②若,則的度數(shù)為_____________.
(2)由(1)猜想與的數(shù)量關(guān)系,并說明理由.
(3)當(dāng)且點(diǎn)E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請寫出角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)某體育用品專賣店銷售7個籃球和9個排球的總利潤為355元,銷售10個籃球和20個排球的總利潤為650元.
(1)求每個籃球和每個排球的銷售利潤;
(2)已知每個籃球的進(jìn)價為200元,每個排球的進(jìn)價為160元,若該專賣店計(jì)劃用不超過17400元購進(jìn)籃球和排球共100個,且要求籃球數(shù)量不少于排球數(shù)量的一半,請你為專賣店設(shè)計(jì)符合要求的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=45°,BC=2,D是線段BC上的一個動點(diǎn),點(diǎn)D是關(guān)于直線AB、AC的對稱點(diǎn)分別為M、N,則線段MN長的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)分別為,將線段直接平移到,使點(diǎn)移至點(diǎn)的位置,點(diǎn)移至點(diǎn)的位置,設(shè)平移過程中線段掃過的面積為,
(1)如圖1,若點(diǎn)的坐標(biāo)是,則點(diǎn)的坐標(biāo)為_____________,請畫出平移后的線段;
(2)如圖2,若點(diǎn)的坐標(biāo)是,請畫出平移后的線段,則的值為_____________;
(3)若,且點(diǎn)在坐標(biāo)軸上,請直接寫出所有滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:點(diǎn)不在同一條直線,.
(1)求證:.
(2)如圖②,分別為的平分線所在直線,試探究與的數(shù)量關(guān)系;
(3)如圖③,在(2)的前提下,且有,直線交于點(diǎn),,請直接寫出______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是邊AB的中點(diǎn),E是邊AC上一動點(diǎn),連結(jié)DE,過點(diǎn)D作DF⊥DE交邊BC于點(diǎn)F(點(diǎn)F與點(diǎn)B、C不重合),延長FD到點(diǎn)G,使DG=DF,連結(jié)EF、AG.已知AB=10,BC=6,AC=8.
(1)求證:△ADG≌△BDF;
(2)請你連結(jié)EG,并求證:EF=EG;
(3)設(shè)AE=,CF=,求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)求線段EF長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com