【題目】甲、乙兩車間同時(shí)開始加工一批服裝.從幵始加工到加工完這批服裝甲車間工作了9小時(shí),乙車間在中途停工一段時(shí)間維修設(shè)備,然后按停工前的工作效率繼續(xù)加工,直到與甲車間同時(shí)完成這批服裝的加工任務(wù)為止.設(shè)甲、乙兩車間各自加工服裝的數(shù)量為y(件).甲車間加工的時(shí)間為x(時(shí)),y與x之間的函數(shù)圖象如圖所示.
(1)甲車間每小時(shí)加工服裝件數(shù)為 件;這批服裝的總件數(shù)為 件.
(2)求乙車間維修設(shè)備后,乙車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式;
(3)求甲、乙兩車間共同加工完1000件服裝時(shí)甲車間所用的時(shí)間.
【答案】(1)80;1140;(2)y=60x﹣120(4≤x≤9);(3)8.
【解析】試題分析:(1)根據(jù)工作效率=工作總量÷工作時(shí)間,即可求出甲車間每小時(shí)加工服裝件數(shù),再根據(jù)這批服裝的總件數(shù)=甲車間加工的件數(shù)+乙車間加工的件數(shù),即可求出這批服裝的總件數(shù);
(2)根據(jù)工作效率=工作總量÷工作時(shí)間,即可求出乙車間每小時(shí)加工服裝件數(shù),根據(jù)工作時(shí)間=工作總量÷工作效率結(jié)合工作結(jié)束時(shí)間,即可求出乙車間修好設(shè)備時(shí)間,再根據(jù)加工的服裝總件數(shù)=120+工作效率×工作時(shí)間,即可求出乙車間維修設(shè)備后,乙車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式;
(3)根據(jù)加工的服裝總件數(shù)=工作效率×工作時(shí)間,求出甲車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式,將甲、乙兩關(guān)系式相加令其等于1000,求出x值,此題得解.
試題解析:解:(1)甲車間每小時(shí)加工服裝件數(shù)為720÷9=80(件),這批服裝的總件數(shù)為720+420=1140(件).
故答案為:80;1140.
(2)乙車間每小時(shí)加工服裝件數(shù)為120÷2=60(件),乙車間修好設(shè)備的時(shí)間為9﹣(420﹣120)÷60=4(時(shí)),∴乙車間維修設(shè)備后,乙車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式為y=120+60(x﹣4)=60x﹣120(4≤x≤9).
(3)甲車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式為y=80x,當(dāng)80x+60x﹣120=1000時(shí),x=8.
答:甲、乙兩車間共同加工完1000件服裝時(shí)甲車間所用的時(shí)間為8小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,各內(nèi)角的平分線分別相交于點(diǎn)E,F,G,H.
(1)求證:△ABG≌△CDE;
(2)猜一猜:四邊形EFGH是什么樣的特殊四邊形?證明你的猜想;
(3)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),已知A(2x,3x+1).
(1)點(diǎn)A在x軸下方,在y軸的左側(cè),且到兩坐標(biāo)軸的距離相等,求x的值;
(2)若x=1,點(diǎn)B在x軸上,且S△OAB=6,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P(a,b),若點(diǎn)P′的坐標(biāo)為(a+kb,ka+b)(其中k為常數(shù),且k≠0),則稱點(diǎn)P′為點(diǎn)P的“k屬派生點(diǎn)”.
例如:P(1,4)的“2屬派生點(diǎn)”為P′(1+2×4,2×1+4),即P′(9,6).
(1)點(diǎn)P(-1,6)的“2屬派生點(diǎn)”P′的坐標(biāo)為_____________;
(2)若點(diǎn)P的“3屬派生點(diǎn)”P′的坐標(biāo)為(6,2),則點(diǎn)P的坐標(biāo)___________;
(3)若點(diǎn)P在x軸的正半軸上,點(diǎn)P的“k屬派生點(diǎn)”為P′點(diǎn),且線段PP′的長(zhǎng)度為線段OP長(zhǎng)度的2倍,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,點(diǎn)E是菱形ABCD內(nèi)一點(diǎn),連結(jié)CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)110°,得到線段CF,連結(jié)BE,DF,若∠E=86°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)今年8月的產(chǎn)值為a萬元, 9月份比8月份增加了10%,10月份比9月份增加了15%,則10月份的產(chǎn)值是( )
A.a(1 10%)(1 15%)萬元B.(a 10%)(a 15%)萬元
C.a(1 90%)(1 85%)萬元D.a(1 10% 15%)萬元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀下面材料:
點(diǎn)A,B在數(shù)軸上分別表示實(shí)數(shù)a,b,A,B兩點(diǎn)之間的距離表示為|AB|.
當(dāng)A,B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖(1),|AB|=|OB|=|b|=|a﹣b|;當(dāng)A,B兩點(diǎn)都不在原點(diǎn)時(shí),
①如圖(2),點(diǎn)A,B都在原點(diǎn)的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;
②如圖(3),點(diǎn)A,B都在原點(diǎn)的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;
③如圖(4),點(diǎn)A,B在原點(diǎn)的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;
綜上,數(shù)軸上A,B兩點(diǎn)之間的距離|AB|=|a﹣b|.
(2)回答下列問題:
①數(shù)軸上表示2和5的兩點(diǎn)之間的距離是 ,數(shù)軸上表示﹣2和﹣5的兩點(diǎn)之間的距離是 ,數(shù)軸上表示1和﹣3的兩點(diǎn)之間的距離是 ;
②數(shù)軸上表示x和﹣1的兩點(diǎn)A和B之間的距離是 ,如果|AB|=2,那么x為 ;
③當(dāng)代數(shù)式|x+1|+|x﹣2|取最小值時(shí),相應(yīng)的x的取值范圍是 .
④解方程|x+1|+|x﹣2|=5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)當(dāng)天,小明帶了四個(gè)粽子(除味道不同外,其它均相同),其中兩個(gè)是大棗味的,另外兩個(gè)是火腿味的,準(zhǔn)備按數(shù)量平均分給小紅和小剛兩個(gè)好朋友.
(1)請(qǐng)你用樹狀圖或列表的方法表示小紅拿到的兩個(gè)粽子的所有可能性;
(2)請(qǐng)你計(jì)算小紅拿到的兩個(gè)粽子剛好是同一味道的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com