【題目】如圖所示,為厲行節(jié)能減排,倡導綠色出行,某公司擬在我市甲、乙兩個街道社區(qū)投放一批共享單車(俗稱“小黃車”),這批自行車包括A、B兩種不同款型.
成本單價 (單位:元) | 投放數(shù)量 (單位:輛) | 總價(單位:元) | |
A型 | x | 50 | 50x |
B型 | x+10 | 50 |
|
成本合計(單位:元) | 7500 |
問題1:看表填空
如圖2所示,本次試點投放的A、B型“小黃車”共有 輛;用含有x的式子表示出B型自行車的成本總價為 ;
問題2:自行車單價
試求A、B兩型自行車的單價各是多少?
問題3:投放數(shù)量
現(xiàn)在該公司采取如下方式投放A型“小黃車”:甲街區(qū)每100人投放n輛,乙街區(qū)每100人投放(n+2)輛,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有人,求甲街區(qū)每100人投放A型“小黃車”的數(shù)量.
【答案】問題1:100;50(x+10);問題2:A、B兩型自行車的單價分別是70元和80元;問題3:甲街區(qū)每100人投放A型“小黃車”2輛.
【解析】
問題1:看圖填數(shù)即可;
問題2:設(shè)A型車的成本單價為x元,則B型車的成本單價為(x+10)元,根據(jù)成本共計7500元,列方程求解即可;
問題3:根據(jù)兩個街區(qū)共有人,列出分式方程進行求解并檢驗即可.
解:問題1:50+50=100(輛)
∴本次試點投放的A、B型“小黃車”共有 100輛;
B型自行車的成本總價為:50(x+10)
故答案為:100;50(x+10)
問題2:設(shè)A型車的成本單價為x元,B型車的成本單價為(x+10)元,依題意得
50x+50(x+10)=7500,
解得x=70,
∴x+10=80,
答:A、B兩型自行車的單價分別是70元和80元;
問題3:,
解得:n=2
經(jīng)檢驗:n=2是所列方程的解,
∴甲街區(qū)每100人投放A型“小黃車”2輛.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC面積為1,第一次操作:分別延長AB,BC,CA至點A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長A1B1,B1C1,C1A1至點A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,那么△A2B2C2的面積是( )
A. 7 B. 14 C. 49 D. 50
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠A=∠C,AD⊥BE于點F,BC⊥BE,點E,D,C在同一條直線上.
(1)判斷AB與CD的位置關(guān)系,并說明理由;
(2)若∠ABC=120°,求∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填空,完成下面題目的解答,如圖,直線AB、CD被直線EF所截,H為CD與EF的交點,∠1=,∠2=,GH⊥CD,垂足為H.
解:因為GH⊥CD(已知),
所以∠2+∠3= (垂直的定義).
因為∠2=(已知),
所以∠3==.
所以∠3=∠4=( ),
又因為∠1=(已知),
所以∠1=∠4,
所以AB∥ ( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】七(1)班小明同學通過《測量硬幣的厚度與質(zhì)量》實驗得到了每枚硬幣的厚度和質(zhì)量,數(shù)據(jù)如下表.他從儲蓄罐取出一把5角和1元硬幣,為了知道總的金額,他把這些硬幣疊起來,用尺量出它們的總厚度為22.6mm,又用天平稱出總質(zhì)量為78.5g,請你幫助小明同學算出這把硬幣的總金額為______元.
1元硬幣 | 5角硬幣 | |
每枚厚度(單位:mm) | 1.8 | 1.7 |
每枚質(zhì)量(單位:g) | 6.1 | 6.0 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】服裝店10月份以每套500元的進價購進一批羽絨服,當月以標價銷售,銷售額14000元,進入11月份搞促銷活動,每件降價50元,這樣銷售額比10月份增加了5500元,售出的件數(shù)是10月份的1.5倍.
(1)求每件羽絨服的標價是多少元;
(2)進入12月份,該服裝店決定把剩余的羽絨服按10月份標價的八折銷售,結(jié)果全部賣掉,而且這批羽絨服總獲利不少于12700元,問這批羽絨服至少購進多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OM平分∠AOB,ON平分∠BOC.
(1)若∠AOB=90°,∠BOC=30°,則∠MON=_____;
(2)若∠AOB=α,∠BOC=β,其它條件不變,則∠MON=______;
(3)當OC運動到∠AOB內(nèi)部時,其余條件不變,請你畫出圖形并猜想∠MON與∠AOB、∠BOC的數(shù)量關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥CD,且AB=CD.E、F是AD上兩點,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,則AD的長為( )
A. a+cB. b+cC. a﹣b+cD. a+b﹣c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一塊直角三角板DEF放置在△ABC上,三角板DEF的兩條直角邊DE、DF恰好分別經(jīng)過點B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com