如圖,直角梯形OABC中,AB∥OC,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)C在x軸正半軸上,點(diǎn)B坐標(biāo)為(2,2
),∠BCO=60°,OH⊥BC于點(diǎn)H.動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),
動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)求OH的長(zhǎng);
(2)若△OPQ的面積為S(平方單位).求S與t之間的函數(shù)關(guān)系式.并求t為何值時(shí),△OPQ的面積最大,最大值是多少;
(3)設(shè)PQ與OB交于點(diǎn)M.
①當(dāng)△OPM為等腰三角形時(shí),求(2)中S的值.
②探究線段OM長(zhǎng)度的最大值是多少,直接寫(xiě)出結(jié)論.