【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,其中點(diǎn)A(5,4),B(1,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1.
(1)畫(huà)出△A1OB1;
(2)在旋轉(zhuǎn)過(guò)程中點(diǎn)B所經(jīng)過(guò)的路徑長(zhǎng)為______;
(3)求在旋轉(zhuǎn)過(guò)程中線段AB、BO掃過(guò)的圖形的面積之和.
【答案】(1)作圖見(jiàn)解析;(2);(3).
【解析】
試題(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的對(duì)應(yīng)點(diǎn)A1、B1的位置,然后順次連接即可;
(2)利用勾股定理列式求OB,再利用弧長(zhǎng)公式計(jì)算即可得解;
(3)利用勾股定理列式求出OA,再根據(jù)AB所掃過(guò)的面積=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OB求解,再求出BO掃過(guò)的面積=S扇形B1OB,然后計(jì)算即可得解.
試題解析:(1)△A1OB1如圖所示;
(2)由勾股定理得,BO=,
所以,點(diǎn)B所經(jīng)過(guò)的路徑長(zhǎng)=
(3)由勾股定理得,OA=,
∵AB所掃過(guò)的面積=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OB
BO掃過(guò)的面積=S扇形B1OB,
∴線段AB、BO掃過(guò)的圖形的面積之和=S扇形A1OA-S扇形B1OB+S扇形B1OB,
=S扇形A1OA,
=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn)),在建立的平面直角坐標(biāo)系中,△ABC繞旋轉(zhuǎn)中心P逆時(shí)針旋轉(zhuǎn)90°后得到△A1B1C1.
(1)在圖中標(biāo)示出旋轉(zhuǎn)中心P,并寫(xiě)出它的坐標(biāo);
(2)以原點(diǎn)O為位似中心,將△A1B1C1作位似變換且放大到原來(lái)的兩倍,得到△A2B2C2,在圖中畫(huà)出△A2B2C2,并寫(xiě)出C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的直角坐標(biāo)系中,已知點(diǎn)A(2,0)、B(0,-4),將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°至AC.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線y=-x2+ax+4經(jīng)過(guò)點(diǎn)C.
①求拋物線的解析式;
②在拋物線上是否存在點(diǎn)P(點(diǎn)C除外)使△ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問(wèn):按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫(huà)樹(shù)狀圖法加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),△ABC各頂點(diǎn)的坐標(biāo)分別是A(﹣2,4),B(﹣4,3),C(﹣1,1).將△ABC向右平移5個(gè)單位長(zhǎng)度,再向下平移4個(gè)單位長(zhǎng)度得到△A′B′C′.
(1)請(qǐng)作出平移后的△A′B′C′,并寫(xiě)出△A′B′C′各頂點(diǎn)的坐標(biāo);
(2)如果將△A′B′C′看成是由△ABC經(jīng)過(guò)一次平移得到的,請(qǐng)指出這一平移的平移方向和平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在Rt△ABC中,∠C=90°,BD平分∠ABC,過(guò)D作DE⊥BD交AB于點(diǎn)E,經(jīng)過(guò)B,D,E三點(diǎn)作⊙O.
(1)求證:AC與⊙O相切于D點(diǎn);
(2)若AD=15,AE=9,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=3,CD=4,點(diǎn)P是AC上一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)A,C不重合),過(guò)點(diǎn)P分別作PE⊥BC于點(diǎn)E,PF∥BC交AB于點(diǎn)F,連接EF,則EF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)是2,D、E分別為AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF=BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙C經(jīng)過(guò)原點(diǎn)且與兩坐標(biāo)軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)A的坐標(biāo)為(0,3),D為⊙C在第一象限內(nèi)的一點(diǎn)且∠ODB=60°.
求:(1)求線段AB的長(zhǎng)及⊙C的半徑;
(2)求B點(diǎn)坐標(biāo)及圓心C的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com