(本題滿分9分)如圖①,小慧同學(xué)把一個正三角形紙片(即△OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片繞著頂點A按順時針方向旋轉(zhuǎn)120°,此時點O運(yùn)動到了點O1處,點B運(yùn)動到了點B1處;小慧又將三角形紙片AO1B1繞點B1按順時針方向旋轉(zhuǎn)120°,此時點A運(yùn)動到了點A1處,點O1運(yùn)動到了點O2處(即頂點O經(jīng)過上述兩次旋轉(zhuǎn)到達(dá)O2處).
小慧還發(fā)現(xiàn):三角形紙片在上述兩次旋轉(zhuǎn)的過程中,頂點O運(yùn)動所形成的圖形是兩段
圓弧,即,頂點O所經(jīng)過的路程是這兩段圓弧的長度之和,并且這兩段圓弧
與直線l1圍成的圖形面積等于扇形AOO1的面積、△AO1B1的面積和扇形B1O1O2的面積之
和.
小慧進(jìn)行類比研究:如圖②,她把邊長為1的正方形紙片OABC放在直線l2上,OA
邊與直線l2重合,然后將正方形紙片繞著頂點^按順時針方向旋轉(zhuǎn)90°,此時點O運(yùn)動到
了點O1處(即點B處),點C運(yùn)動到了點C1處,點B運(yùn)動到了點B1處;小慧又將正方形
紙片AO1C1B1繞頂點B1按順時針方向旋轉(zhuǎn)90°,……,按上述方法經(jīng)過若干次旋轉(zhuǎn)后.她
提出了如下問題:
問題①:若正方形紙片OABC接上述方法經(jīng)過3次旋轉(zhuǎn),求頂點O經(jīng)過的路程,并
求頂點O在此運(yùn)動過程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OA BC
按上述方法經(jīng)過5次旋轉(zhuǎn),求頂點O經(jīng)過的路程;
問題②:正方形紙片OABC按上述方法經(jīng)過多少次旋轉(zhuǎn),頂點O經(jīng)過的路程是
?
請你解答上述兩個問題.
解:問題①:如圖,正方形紙片經(jīng)過3次旋轉(zhuǎn),頂點O運(yùn)動所形成的圖形是三段圓弧
所以頂點O在此運(yùn)動過程中經(jīng)過的路程為。
頂點 O在此運(yùn)動過程中所形成的圖形與直線圍成圖形的面積為。
正方形紙片經(jīng)過5次旋轉(zhuǎn),頂點O運(yùn)動經(jīng)過的路程為:
問題②:∵ 正方形紙片每經(jīng)過4次旋轉(zhuǎn),頂點O運(yùn)動經(jīng)過的路程均為:
,而是正方形紙片第4+1次旋轉(zhuǎn),頂點O運(yùn)動經(jīng)過的路程。
∴正方形紙片OABC按上述方法經(jīng)過81次旋轉(zhuǎn),頂點O經(jīng)過的路程是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•溫州)如圖,O是正方形ABCD的對角線BD上一點,⊙O與邊AB,BC都相切,點E,F(xiàn)分別在AD,DC上,現(xiàn)將△DEF沿著EF對折,折痕EF與⊙O相切,此時點D恰好落在圓心O處.若DE=2,則正方形ABCD的邊長是( 。
A.3B.4
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·肇慶)(本小題滿分10分)己知:如圖10.△ABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC干點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結(jié)AD.
(1)求證:∠DAC=∠DBA
(2)求證:P處線段AF的中點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一條公路彎道處是一段圓弧,點O是這條弧所在圓的圓心,點C是的中點,OC與AB相交于點D。已知AB=120m,CD=20m,那么這段彎道的半徑為(   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(11·欽州)已知⊙O1和⊙O2的半徑分別為2和5,如果兩圓的位置關(guān)系為外離,那么圓心距O1O2的取值范圍在數(shù)軸上表示正確的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•德州)●觀察計算
當(dāng)a=5,b=3時,的大小關(guān)系是
當(dāng)a=4,b=4時,的大小關(guān)系是=
●探究證明
如圖所示,△ABC為圓O的內(nèi)接三角形,AB為直徑,過C作CD⊥AB于D,設(shè)AD=a,BD=b.
(1)分別用a,b表示線段OC,CD;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
●歸納結(jié)論
根據(jù)上面的觀察計算、探究證明,你能得出的大小關(guān)系是:
●實踐應(yīng)用
要制作面積為1平方米的長方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•福州)如圖,在△ABC中,∠A=90°,O是BC邊上一點,以O(shè)為圓心的半圓分別與AB、AC邊相切于D、E兩點,連接OD.已知BD=2,AD=3.
求:(1)tanC;
(2)圖中兩部分陰影面積的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011貴州安順,26,12分)已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點DDEAC,垂足為點E
⑴求證:點DAB的中點;
⑵判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
⑶若⊙O的直徑為18,cosB =,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點DAC上一點,點O為邊AB上一點,ADDO.以O為圓心,OD長為半

徑作圓,交AC于另一點E,交AB于點FG,連接EF.若
BAC=22°,則∠EFG_  ▲  

查看答案和解析>>

同步練習(xí)冊答案