【題目】如圖1所示,在正方形ABCD和正方形CGEF中,點B、C、G在同一條直線上,M是線段AE的中點,DM的延長線交EF于點N,連接FM,易證:DM=FM,DM⊥FM(無需寫證明過程)
(1)如圖2,當點B、C、F在同一條直線上,DM的延長線交EG于點N,其余條件不變,試探究線段DM與FM有怎樣的關系?請寫出猜想,并給予證明;
(2)如圖3,當點E、B、C在同一條直線上,DM的延長線交CE的延長線于點N,其余條件不變,探究線段DM與FM有怎樣的關系?請直接寫出猜想.
【答案】(1)DM⊥FM,DM=FM,證明見解析;
(2)DM⊥FM,DM=FM.
【解析】
試題分析:(1)連接DF,NF,由四邊形ABCD和CGEF是正方形,得到AD∥BC,BC∥GE,于是得到AD∥GE,求得∠DAM=∠NEM,證得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,證出△DFN是等腰直角三角形,即可得到結論;
(2)連接DF,NF,由四邊形ABCD是正方形,得到AD∥BC,由點E、B、C在同一條直線上,于是得到AD∥CN,求得∠DAM=∠NEM,證得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,證出△DFN是等腰直角三角形,于是結論得到.
試題解析:(1)如圖2,DM=FM,DM⊥FM,
證明:連接DF,NF,
∵四邊形ABCD和CGEF是正方形,
∴AD∥BC,BC∥GE,
∴AD∥GE,
∴∠DAM=∠NEM,
∵M是AE的中點,
∴AM=EM,
在△MAD與△MEN中,,∴△MAD≌△MEN,∴DM=MN,AD=EN,
∵AD=CD,∴CD=NE,∵CF=EF,∠DCF=∠DCB=90°,
在△DCF與△NEF中,,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,
∵∠EFN+∠NFC=90°,∴∠DFC+∠CFN=90°,∴∠DFN=90°,
∴DM⊥FM,DM=FM
(2)猜想:DM⊥FM,DM=FM,
證明如下:如圖3,連接DF,NF,連接DF,NF,
∵四邊形ABCD是正方形,∴AD∥BC,∵點E、B、C在同一條直線上,
∴AD∥CN,∴∠ADN=∠MNE,
在△MAD與△MEN中,,
∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∵∠DCF=90°+45°=135°,∠NEF=180°﹣45°=135°,∴∠DCF=∠NEF,
在△DCF與△NEF中,,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,
∵∠CFD+∠EFD=90°,∴∠NFE+∠EFD=90°,∴∠DFN=90°,
∴DM⊥FM,DM=FM.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2+2x+=0有兩個不相等的實數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當此方程有一根為零時,直線y=x+2與關于x的二次函數(shù)y=x2+2x+的圖象交于A、B兩點,若M是線段AB上的一個動點,過點M作MN⊥x軸,交二次函數(shù)的圖象于點N,求線段MN的最大值及此時點M的坐標;
(3)將(2)中的二次函數(shù)圖象x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分保持不變,翻折后的圖象與原圖象x軸上方的部分組成一個“W”形狀的新圖象,若直線y=x+b與該新圖象恰好有三個公共點,求b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】母親節(jié)前夕,某淘寶店主從廠家購進A、B兩種禮盒,已知A、B兩種禮盒的單價比為2:3,單價和為200元.
(1)求A、B兩種禮盒的單價分別是多少元?
(2)該店主購進這兩種禮盒恰好用去9600元,且購進A種禮盒最多36個,B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進貨方案?
(3)根據(jù)市場行情,銷售一個A種禮盒可獲利10元,銷售一個B種禮盒可獲利18元.為奉獻愛心,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時店主獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種商品的進價為80元,標價為100元,后由于該商品積壓,商店準備打折銷售,要保證利潤率不低于12.5%,該種商品最多可打( )
A.九折B.八折C.七折D.六折
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D、E是△ABC內(nèi)的兩點,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,則BC的長是 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,海面上以點A為宗信的4海里內(nèi)有暗礁,在海面上點B處有一艘海監(jiān)船,欲到C處去執(zhí)行任務,若∠ABC=45°,∠ACB=37°,B,C兩點相距10海里,如果這艘海監(jiān)船沿BC直接航行,會有觸礁的危險嗎?請說明理由.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com