【題目】如圖,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)判斷的形狀,證明你的結(jié)論;
(3)點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的值最小時(shí),求的值.
【答案】(1)y=x2-x-2,頂點(diǎn)D的坐標(biāo)為(,-);(2)△ABC是直角三角形,理由見解析;(3)m=.
【解析】
試題分析:(1)把點(diǎn)A代入函數(shù)解析式即可求得b值,可得拋物線的解析式,根據(jù)解析式直接求得頂點(diǎn)D的坐標(biāo)即可;(2)由函數(shù)解析式可以求得其與x軸、y軸的交點(diǎn)坐標(biāo),即可求得AB、BC、AC的長,由勾股定理的逆定理可得三角形的形狀;(3)先求得C關(guān)于x軸的對(duì)稱點(diǎn)C′,求得直線C′D的解析式,與x軸的交點(diǎn)的橫坐標(biāo)即是m的值.
試題解析:(1)∵點(diǎn)A(-1,0)在拋物線y=
x2+bx-2上,
∴×(-1)2+b×(-1)-2=0,
解得,b=-
∴拋物線的解析式為y=x2-x-2
y=x2-x-2=(x2-3x-4)=(x-)2-,
∴頂點(diǎn)D的坐標(biāo)為(,-).
(2)當(dāng)x=0時(shí)y=-2,
∴C(0,-2),OC=2.
當(dāng)y=0時(shí),
x2-x-2=0,
∴x1=-1,x2=4,
∴B(4,0).
∴OA=1,OB=4,AB=5.
∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,
∴AC2+BC2=AB2.
∴△ABC是直角三角形.
作出點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)C′,則C′(0,2),OC′=2,連接C′D交x軸于點(diǎn)M,根據(jù)軸對(duì)稱性及兩點(diǎn)之間線段最短可知,MC+MD的值最小.
設(shè)直線C′D的解析式為y=kx+n,
則,
解得n=2,k=-.
∴y=-x+2.
∴當(dāng)y=0時(shí),-x+2=0,x=.
∴m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,建立如圖所示的平面直角坐標(biāo)系:
(1)求拱橋所在拋物線的解析式;
(2)當(dāng)水面下降1m時(shí),則水面的寬度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB為⊙O的直徑,C是⊙O上一點(diǎn),如圖,AB=12,BC=4.BH與⊙O相切于點(diǎn)B,過點(diǎn)C作BH的平行線交AB于點(diǎn)E.
(1)求CE的長;
(2)延長CE到F,使EF=,連接BF并延長BF交⊙O于點(diǎn)G,求BG的長;
(3)在(2)的條件下,連接GC并延長GC交BH于點(diǎn)D,求證:BD=BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(diǎn)(1,2),后三分鐘時(shí)過點(diǎn)(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過點(diǎn)(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設(shè)反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過點(diǎn)(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對(duì)稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點(diǎn)睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點(diǎn)的坐標(biāo).
【題型】解答題
【結(jié)束】
24
【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點(diǎn)E為△ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①所示是邊長為的大正方形中有一個(gè)邊長為的小正方形.圖②是由圖①中陰影部分拼成的一個(gè)長方形.
(1)設(shè)圖①中陰影部分的面積為,圖②中陰影部分的面積為,請(qǐng)用含的式子表示: , ;(不必化簡)
(2)以上結(jié)果可以驗(yàn)證的乘法公式是 ;
(3)利用(2)中得到的公式,計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知為等邊三角形,為射線上一點(diǎn),為射線上一點(diǎn),.
(1)如圖1,當(dāng)點(diǎn)在的延長線上且時(shí),是的中線嗎?請(qǐng)說明理由;
(2)如圖2,當(dāng)點(diǎn)在的延長線上時(shí),寫出之間的數(shù)量關(guān)系,請(qǐng)說明理由;
(3)如圖3,當(dāng)點(diǎn)在線段的延長線上,點(diǎn)在線段上時(shí),請(qǐng)直接寫出的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜邊上的中線與斜邊的比為;⑤兩個(gè)相似多邊形的面積比為,則周長的比為.”中,正確的個(gè)數(shù)有( )個(gè)
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)邊長分別為的正方形如圖①放置,其未重合部分(陰影部分)面積為S1 . 在圖①中大正方形的右下角擺放一個(gè)邊長為b的小正方形,得到圖②,兩個(gè)邊長為b的小正方形重合部分(陰影部分)面積為S2.
(1)用含a、b的代數(shù)式分別表示S1、S2.
(2)若a+b=9,ab=21,求S1+S2的值.
(3)將兩個(gè)邊長分別為a和b的正方形如圖③放置.當(dāng)S1+S2=30時(shí),求出圖③中陰影部分的面積S3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com