【題目】如圖,一個(gè)半徑為的圓形紙片在邊長為的等邊三角形內(nèi)任意運(yùn)動(dòng),則在該等邊三角形內(nèi),這個(gè)圓形紙片不能接觸到的部分的面積是____________.

【答案】

【解析】

過圓形紙片的圓心O1作兩邊的垂線,垂足分別為DE,連AO1,則在RtADO1中,可求得AD=,四邊形ADO1E的面積等于三角形ADO1的面積的2倍,還可求出扇形O1DE的面積,所求面積等于四邊形ADO1E的面積減去扇形O1DE的面積的三倍.

如圖,當(dāng)圓形紙片運(yùn)動(dòng)到與∠A的兩邊相切的位置時(shí),


過圓形紙片的圓心O1作兩邊的垂線,垂足分別為D,E
連結(jié)AO1,則RtADO1中,∠O1AD=30°O1D=r,AD=

S四邊形ADO1E=

∵由題意,∠DO1E=120°,得S扇形O1DE=
∴圓形紙片不能接觸到的部分的面積為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月份,我市某中學(xué)開展?fàn)幾觥拔搴眯」瘛闭魑谋荣惢顒?dòng),賽后隨機(jī)抽取了部分參賽學(xué)生的成績,按得分劃分為A,B,C,D四個(gè)等級(jí),并繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:

 等級(jí)

 成績(s)

 頻數(shù)(人數(shù))

 A

 90<s≤100

4

 B

 80<s≤90

x

 C

 70<s≤80

16

 D

 s≤70

6

根據(jù)以上信息,解答以下問題:

(1)表中的x=   

(2)扇形統(tǒng)計(jì)圖中m=   ,n=   ,C等級(jí)對(duì)應(yīng)的扇形的圓心角為   度;

(3)該校準(zhǔn)備從上述獲得A等級(jí)的四名學(xué)生中選取兩人做為學(xué)!拔搴眯」瘛敝驹刚撸阎@四人中有兩名男生(用a1,a2表示)和兩名女生(用b1,b2表示),請(qǐng)用列表或畫樹狀圖的方法求恰好選取的是a1和b1的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,點(diǎn)D是弧AC的中點(diǎn),連結(jié)BD交AC于點(diǎn)E,過D點(diǎn)作⊙O的切線交BC的延長線于F.

(1)求證:∠FDB = ∠AED.

(2)若⊙O 的半徑為5,tan∠FBD=,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°.

(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使PA=PB(不寫作法,保留作圖痕跡);

(2)連接AP,若AP平分∠CAB,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖像與坐標(biāo)軸交于點(diǎn)A1, 0)和點(diǎn)C.經(jīng)過點(diǎn)A的直線與二次函數(shù)圖像交于另一點(diǎn)B,點(diǎn)B與點(diǎn)C關(guān)于二次函數(shù)圖像的對(duì)稱軸對(duì)稱.

1)求一次函數(shù)表達(dá)式;

2)點(diǎn)P在二次函數(shù)圖像的對(duì)稱軸上,當(dāng)ACP的周長最小時(shí),請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,D,E是半圓上任意兩點(diǎn),連接AD,DE,AE與BD相交于點(diǎn)C,要使ADC與BDA相似,可以添加一個(gè)條件.下列添加的條件中錯(cuò)誤的是( )

A. ACD=DAB B. AD=DE C. AD·AB=CD·BD D. AD2=BD·CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測(cè)得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測(cè)得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把正邊形()的各邊三等分,分別以居中的那條線段為一邊向外作正邊形,并去掉居中的那條線段,得到一個(gè)新的圖形叫做正邊形的擴(kuò)展圖形,并將它的邊數(shù)記為,如圖,將正三角形進(jìn)行上述操作后得到其擴(kuò)展圖形,且.、圖分別是正五邊形、正六邊形的擴(kuò)展圖形。

(1)如圖,在的正方形網(wǎng)格中用較粗的虛線畫有一個(gè)正方形,請(qǐng)?jiān)趫D中用實(shí)線畫出此正方形的擴(kuò)展圖形;

(2)已知,則圖=_____,根據(jù)以上規(guī)律,正邊形的擴(kuò)展圖形=______(用含的式子表示)

(3)已知,且,則=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著生活水平的提高,人們對(duì)空氣質(zhì)量的要求也越來越高。為了了解月中旬長春市城區(qū)的空氣質(zhì)量情況,某校綜合實(shí)踐環(huán)境調(diào)查小組,從天氣預(yù)報(bào)網(wǎng)抽取了朝陽區(qū)和南關(guān)區(qū)這兩個(gè)城區(qū)——日的空氣質(zhì)量指數(shù),作為樣本進(jìn)行統(tǒng)計(jì),過程如下,請(qǐng)補(bǔ)充完整.

收集數(shù)據(jù)

朝陽區(qū)

南關(guān)區(qū)

整理、描述數(shù)據(jù)

按下表整理、描述這兩城區(qū)空氣質(zhì)量指數(shù)的數(shù)據(jù).

空氣質(zhì)量

優(yōu)

輕微污染

中度污染

重度污染

朝陽區(qū)

南關(guān)區(qū)

(說明:空氣質(zhì)量指數(shù)時(shí),空氣質(zhì)量為優(yōu);空氣質(zhì)量指數(shù)時(shí),空氣質(zhì)量為良;空氣質(zhì)量指數(shù)時(shí),空氣質(zhì)量為輕微污染;空氣質(zhì)量指數(shù)時(shí),空氣質(zhì)量為中度污染;空氣質(zhì)量指數(shù)時(shí),空氣質(zhì)量為重度污染.

分析數(shù)據(jù)

兩城區(qū)的空氣質(zhì)量指數(shù)的平均數(shù)、中位數(shù)、方差如下表所示.

城區(qū)

平均數(shù)

中位數(shù)

方差

朝陽區(qū)

南關(guān)區(qū)

請(qǐng)將以上兩個(gè)表格補(bǔ)充完整.

得出結(jié)論可以推斷出哪個(gè)城區(qū)這十天中空氣質(zhì)量情況比較好?請(qǐng)至少從兩個(gè)不同的角度說明推斷的合理性.

查看答案和解析>>

同步練習(xí)冊(cè)答案