【題目】點(diǎn)P是菱形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),已知AB=1,∠ADC=120°, 點(diǎn)M,N分別是AB,BC邊上的中點(diǎn),則△MPN的周長(zhǎng)最小值是______.
【答案】.
【解析】
先作點(diǎn)M關(guān)于AC的對(duì)稱點(diǎn)M′,連接M′N交AC于P,此時(shí)MP+NP有最小值.然后證明四邊形ABNM′為平行四邊形,即可求出MP+NP=M′N=AB=1,再求出MN的長(zhǎng)即可求出答案.
如圖,作點(diǎn)M關(guān)于AC的對(duì)稱點(diǎn)M′,連接M′N交AC于P,此時(shí)MP+NP有最小值,最小值為M′N的長(zhǎng).
∵菱形ABCD關(guān)于AC對(duì)稱,M是AB邊上的中點(diǎn),
∴M′是AD的中點(diǎn),
又∵N是BC邊上的中點(diǎn),
∴AM′∥BN,AM′=BN,
∴四邊形ABNM′是平行四邊形,
∴M′N=AB=1,
∴MP+NP=M′N=1,即MP+NP的最小值為1,
連結(jié)MN,過點(diǎn)B作BE⊥MN,垂足為點(diǎn)E,
∴ME=MN,
在Rt△MBE中,,BM=
∴ME=,
∴MN=
∴△MPN的周長(zhǎng)最小值是+1.
故答案為:+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購(gòu)進(jìn)甲、乙兩種商品,已知每件甲種商品的價(jià)格比每件乙種商品的價(jià)格貴10元,用350元購(gòu)買甲種商品的件數(shù)恰好與用300元購(gòu)買乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品每件的價(jià)格各是多少元?
(2)計(jì)劃購(gòu)買這兩種商品共50件,且投入的經(jīng)費(fèi)不超過3200元,那么,最多可購(gòu)買多少件甲種商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組對(duì)函數(shù)y=x+的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整.
x | … | ﹣3 | ﹣2 | ﹣1 | - | - | 1 | 2 | 3 | … | ||
y | … | - | m | ﹣2 | - | - | 2 |
| … |
(1)自變量x的取值范圍是 ,m= .
(2)根據(jù)(1)中表內(nèi)的數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),畫出函數(shù)圖象的一部分,請(qǐng)你畫出該函數(shù)圖象的另一部分.
(3)請(qǐng)你根據(jù)函數(shù)圖象,寫出兩條該函數(shù)的性質(zhì);
(4)進(jìn)一步探究該函數(shù)的圖象發(fā)現(xiàn):
①方程x+=3有 個(gè)實(shí)數(shù)根;
②若關(guān)于x的方程x+=t有2個(gè)實(shí)數(shù)根,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料并解決有關(guān)問題:我們知道|x|=,現(xiàn)在我們可以用這個(gè)結(jié)論來化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|時(shí),可令x+1=0和x﹣2=0,分別求得x=﹣1,x=2(稱﹣1,2分別叫做|x+1|與|x﹣2|的零點(diǎn)值.)在有理數(shù)范圍內(nèi),零點(diǎn)值x=﹣1和x=2可將全體有理數(shù)分成不重復(fù)且不遺漏的如下3種情況:
(1)當(dāng)x<﹣1時(shí),原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
(2)當(dāng)﹣1≤x≤2時(shí),原式=x+1﹣(x﹣2)=3;
(3)當(dāng)x>2時(shí),原式=x+1+x﹣2=2x﹣1.
綜上所述,原式=.
通過以上閱讀,請(qǐng)你解決以下問題:
(1)分別求出|x+2|和|x﹣4|的零點(diǎn)值;
(2)化簡(jiǎn)代數(shù)式|x+2|+|x﹣4|;
(3)求方程:|x+2|+|x﹣4|=6的整數(shù)解;
(4)|x+2|+|x﹣4|是否有最小值?如果有,請(qǐng)直接寫出最小值;如果沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場(chǎng)平時(shí)以同樣價(jià)格出售相同的商品,春節(jié)期間兩家商場(chǎng)都讓利酬賓,其中甲商場(chǎng)所有商品按8折出售,乙商場(chǎng)對(duì)一次購(gòu)物中超過200元后的價(jià)格部分打7折.
(1)以x(單位:元)表示商品原價(jià),y(單位:元)表示購(gòu)物金額,分別就兩家商場(chǎng)的讓利方式寫出y關(guān)于x的函數(shù)解析式;
(2)在同一直角坐標(biāo)系中畫出(1)中函數(shù)的圖象;
(3)春節(jié)期間如何選擇這兩家商場(chǎng)去購(gòu)物更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為方便市民出行,減輕城市中心交通壓力,貴陽(yáng)市地鐵1號(hào)線于2018年12月1號(hào)正式全線開通.地鐵開通后,李明爸爸媽媽的出行方式將由乘公交車改為乘坐地鐵,爸爸從國(guó)際生態(tài)會(huì)議中心站出發(fā)至噴水池站,每天所需的時(shí)間將比以往節(jié)省70%;媽媽從國(guó)際生態(tài)會(huì)議中心站出發(fā)至珠江路站,每天所需的時(shí)間將比以往節(jié)省55%,這樣兩人所需的時(shí)間共節(jié)省60%,現(xiàn)在兩人乘地鐵所需的時(shí)間之和為1.2小時(shí).請(qǐng)問李明爸爸媽媽原來乘公交車上班時(shí)每天所需時(shí)間各為多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸交于A,B兩點(diǎn),以AB為斜邊在第一象限內(nèi)作等腰直角三角形ABC,點(diǎn)C為直角頂點(diǎn),連接OC.
(1)直接寫出= ;
(2)請(qǐng)你過點(diǎn)C作CE⊥y軸于E點(diǎn),試探究OB+OA與CE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)M為AB的中點(diǎn),點(diǎn)N為OC的中點(diǎn),求MN的值;
(4)如圖2,將線段AB繞點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)至BD,且OD⊥AD,延長(zhǎng)DO交直線于點(diǎn)P,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=x-2y,B=-x-4y+1.
(1)求2(A+B)-(A-B);(結(jié)果用含x,y的代數(shù)式表示)
(2)當(dāng)與互為相反數(shù)時(shí),求(1)中代數(shù)式的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com