如下左圖,給出下列條件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD·AB.其中能夠單獨判定△ABC∽△ACD的條件個數(shù)為  

A.1              B.2                C.3                D.4
C

試題分析:由圖可得△ABC與△ACD有一個公共角∠A,再根據(jù)相似三角形的判定方法依次分析即可.
①∠B=∠ACD,②∠ADC=∠ACB,④AC2=AD·AB,均能夠單獨判定△ABC∽△ACD
不能夠單獨判定△ABC∽△ACD
故選C.
點評:相似三角形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8。P是AC上的一個動點,當P在AC上運動時,設PC=x,△ABP 的面積為y.
(1)求AC邊上的高是多少?
(2)求y與x之間的關系式。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:把按如圖(1)擺放(點與點重合),點、)、在同一條直線上.,,,,.如圖(2),從圖(1)的位置出發(fā),以的速度沿勻速移動,在移動的同時,點的頂點出發(fā),以2 cm/s的速度沿向點勻速移動.當的頂點移動到邊上時,停止移動,點也隨之停止移動.相交于點,連接,設移動時間為

(1)當為何值時,點在線段的垂直平分線上?
(2)連接,設四邊形的面積為,求之間的函數(shù)關系式;是否存在某一時刻,使面積最小?若存在,求出的最小值;若不存在,說明理由.
(3)是否存在某一時刻,使、三點在同一條直線上?若存在,求出此時的值;若不存在,說明理由.(圖(3)供同學們做題使用)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,D、E分別是AB、AC的中點,連結(jié)DE,若S△ADE =1,則S△ABC =_____________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在的正方形網(wǎng)格中,△OAB的頂點分別為O(0,0),A(1,2),B(2,-1).

(1)以點O(0,0)為位似中心,按比例尺(OA︰OA’)1:3在位似中心的同側(cè)將△OAB放大為△OA’B’,放大后點A、B的對應點分別為A’、B’ .畫出△OA’B’,并寫出點A’、B’的坐標:A’(       ),B’(           );
(2)在(1)中,若為線段上任一點,寫出變化后點的對應點的坐標(        ).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一張等腰三角形紙片,底邊長l5cm,底邊上的高長22.5cm.現(xiàn)沿底邊依次從下往上裁剪寬度均為3cm的矩形紙條,如圖所示.已知剪得的紙條中有一張是正方形,則這張正方形紙條是( )
A.第4張B.第5張C.第6張D.第7張

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在△ABC中,點D、E分別在AB、AC上,∠ADE=∠C,如果AD=3,△ADE的面積為9,四邊形BDEC的面積為16,則AC的長為        .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點D、E分別在△ABC的邊AB、AC上,下列條件不能使△ADE∽△ABC相似的是( )
A.DEBCB.ADAB=DEBC
C.ADDB=AEECD.∠BDE+∠DBC=180°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形, 點G是BC上任意一點,DE⊥AG于點E,BF⊥AG于點F.

(1) 求證:DE-BF = EF.
(2) 當點G為BC邊中點時, 試探究線段EF與GF之間的數(shù)量關系, 并說明理由.
(3) 若點G為CB延長線上一點,其余條件不變.請畫出圖形,寫出此時DE、BF、EF之間的數(shù)量關系(不需要證明).

查看答案和解析>>

同步練習冊答案