【題目】如圖,平行四邊形ABCD中,AEBC于點E,AFCD于點F,若∠EAF=60°,BE=2cm,FD=3cm,則平行四邊形ABCD的面積為________________

【答案】12cm2

【解析】

由已知可求得∠C=120°;進而求得∠B=60°,在直角三角形ABE中求得AB的長,同理求得AD的長,求平行四邊形ABCD的面積即可.

解:∵AEBC,AFCD,∠EAF=60°,
∴∠AEC=AFC=90°,
∴∠C=120°,
∵四邊形ABCD是平行四邊形,
∴∠B+C=180°,∠B=D,

∴∠B=D=60°
∴∠BAE=FAD=30°,
∵直角三角形ABE中,∠B=60°,BE=2cm

AB=4cm

CD=4cm

∵直角三角形AFD中,∠D=60°,FD=3cm

AD=6cm

AF=

SABCD=CDAF=4×3=12cm2

故答案為:12cm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAP+∠APD180°,∠AOE=∠1,∠FOP=∠2.

(1)若∠155°,求∠2的度數(shù);

(2)求證:AEFP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程(組)解應用題:

為順利通過國家義務教育均衡發(fā)展驗收,我市某中學配備了兩個多媒體教室,購買了筆記本電腦和臺式電腦共120臺,購買筆記本電腦用了7.2萬元,購買臺式電腦用了24萬元,已知筆記本電腦單價是臺式電腦單價的1.5倍,那么筆記本電腦和臺式電腦的單價各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列結論中正確的有(

;;③;

;⑤;⑥

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2014元旦前夕,某商場試銷一種成本為30元的文化衫,經(jīng)試銷發(fā)現(xiàn),若每件按34元的價格銷售,每天能賣出36件;若每件按39元的價格銷售,每天能賣出21件.假定每天銷售件數(shù)y(件)是銷售價格x()的一次函數(shù).

(1)直接寫出yx之間的函數(shù)關系式.

(2)在不積壓且不考慮其他因素的情況下,每件的銷售價格定為多少元時,才能使每天獲得的利潤P最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑與弦相交于點,若,,則________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點AB的坐標分別為(﹣3,0),(06).動點P從點O出發(fā),沿x軸正方向以每秒1個單位的速度運動,同時動點CB出發(fā),沿射線BO方向以每秒2個單位的速度運動,以CP,CO為鄰邊構造PCOD,在線段OP延長線上取點E,使PE=AO,設點P運動的時間為t秒.

1)當點C運動到線段OB的中點時,求t的值及點E的坐標.

2)當點C在線段OB上時,求證:四邊形ADEC為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,AC平分∠BAD,CEABE,∠ADC+CBE=180°,求證:2AE=AB+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018新技術支持未來教育的教師培訓活動中,會議就面向未來的學校教育、家庭教育及實踐應用演示等問題進行了互動交流,記者隨機采訪了部分參會教師,對他們發(fā)言的次數(shù)進行了統(tǒng)計,并繪制了不完整的統(tǒng)計表和條形統(tǒng)計圖.

組別

發(fā)言次數(shù)n

百分比

A

0≤n<3

10%

B

3≤n<6

20%

C

6≤n<9

25%

D

9≤n<12

30%

E

12≤n<15

10%

F

15≤n<18

m%

請你根據(jù)所給的相關信息,解答下列問題:

(1)本次共隨機采訪了 _____ 名教師,m= _____ ;

(2)補全條形統(tǒng)計圖;

(3)已知受訪的教師中,E組只有2名女教師,F組恰有1名男教師,現(xiàn)要從E組、F組中分別選派1名教師寫總結報告,請用列表法或畫樹狀圖的方法,求所選派的兩名教師恰好是11女的概率.

查看答案和解析>>

同步練習冊答案