有10位乒乓球選手進(jìn)行單循環(huán)賽(每?jī)扇碎g均比塞一場(chǎng)),用x1、y1順次表示第一號(hào)選手勝與負(fù)的場(chǎng)數(shù);用x2、y2順次表示第二號(hào)選手勝與負(fù)的場(chǎng)數(shù),…,用x10、y10順次表示第10號(hào)選手勝與負(fù)的場(chǎng)數(shù),求證:

答案:
解析:

  

  課標(biāo)剖析:顯然x1,y1,x2,y2,…,x10,y10是未知數(shù),不確定的,但x1+y1,x2+y2,…,x10+y10卻是一個(gè)定值,即每位選手勝、負(fù)的場(chǎng)數(shù)為定值9,應(yīng)從此處入手.(1)此題要證兩者相等,轉(zhuǎn)化為證兩者之差為零,即采用作差法求解;(2)此題在變化之中隱含著兩個(gè)不變量——每位選手的勝負(fù)場(chǎng)數(shù)和與每位選手的比賽場(chǎng)數(shù)相等,所有選手的勝場(chǎng)數(shù)和與負(fù)場(chǎng)數(shù)和相等,這就是解決本題的關(guān)鍵所在.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

10位乒乓球選手進(jìn)行單循環(huán)賽(每?jī)扇碎g均賽一場(chǎng)),用x1,y1順次表示第1號(hào)選手勝與負(fù)的場(chǎng)數(shù),用x2,y2順次表示第2號(hào)選手勝與負(fù)的場(chǎng)數(shù),……用x10,y10順次表示第10號(hào)選手勝與負(fù)的場(chǎng)數(shù).10名選手勝的場(chǎng)數(shù)的平方和與他們負(fù)的場(chǎng)數(shù)的平方和相等,即

x12+x22++x102=y12+y22++y102,為什么?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:新課標(biāo) 讀想練同步測(cè)試 七年級(jí)數(shù)學(xué)(下) 北師大版 題型:047

有10位乒乓球選手進(jìn)行單循環(huán)賽(每?jī)扇碎g均比賽一場(chǎng)),用x1、y1順次表示第一號(hào)選手勝與負(fù)的場(chǎng)數(shù);用x2、y2順次表示第二號(hào)選手勝與負(fù)的場(chǎng)數(shù),…,用x10、y10順次表示第10號(hào)選手勝與負(fù)的場(chǎng)數(shù),求證:+…++…+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:黃岡難點(diǎn)課課練  七年級(jí)數(shù)學(xué)下冊(cè)(北師大版) 題型:044

有10位乒乓球選手進(jìn)行單循環(huán)賽(每?jī)扇酥g只賽一場(chǎng)),用x1、y1順次表示第1號(hào)選手勝與負(fù)的場(chǎng)數(shù),用x2、y2順次表示第2號(hào)選手勝與負(fù)的場(chǎng)數(shù),……用x10、y10順次表示第10號(hào)選手勝與負(fù)的場(chǎng)數(shù).試用所學(xué)知識(shí)說(shuō)明十名選手勝的場(chǎng)數(shù)的平方和與他們負(fù)的場(chǎng)數(shù)的平方和相等,即+…++…+.為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有10位乒乓球選手進(jìn)行單循環(huán)賽(每?jī)扇碎g均賽一場(chǎng)),用x1,y1順次表示第1號(hào)選手勝與負(fù)的場(chǎng)數(shù),用x2,y2順次表示第2號(hào)選手勝與負(fù)的場(chǎng)數(shù),……用x10,y10順次表示第10號(hào)選手勝與負(fù)的場(chǎng)數(shù).則10名選手勝的場(chǎng)數(shù)的平方和與他們負(fù)的場(chǎng)數(shù)的平方和相等,即

x12+x22+…+x102=y12+y22+…+y102,為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案