【題目】如圖,AB是半圓O的直徑,C是半圓O上一點(diǎn),弦AD平分∠BAC,交BC于點(diǎn)E,若AB=6,AD=5,則DE的長(zhǎng)為

【答案】
【解析】解:如圖,連接BD,
∵AB為⊙O的直徑,AB=6,AD=5,
∴∠ADB=90°,
∴BD= =
∵弦AD平分∠BAC,

∴∠DBE=∠DAB,
在△ABD和△BED中,
,
∴△ABD∽△BED,
,即BD2=ED×AD,
∴( 2=ED×5,
解得DE=
所以答案是:

【考點(diǎn)精析】通過(guò)靈活運(yùn)用勾股定理的概念和圓周角定理,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0)和B(0,2 ),對(duì)稱軸為x=

(1)求拋物線的解析式;
(2)拋物線與x軸交于另一個(gè)交點(diǎn)為C,點(diǎn)D在線段AC上,已知AD=AB,若動(dòng)點(diǎn)P從A出發(fā)沿線段AC以每秒1個(gè)單位長(zhǎng)度的度數(shù)勻速運(yùn)動(dòng),同時(shí)另一動(dòng)點(diǎn)Q以某一速度從B出發(fā)沿線段BC勻速運(yùn)動(dòng),問(wèn)是否存在某一時(shí)刻,使線段PQ被直線BD垂直平分?若存在,求出點(diǎn)Q的運(yùn)動(dòng)速度;若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的前提下,過(guò)點(diǎn)B的直線l與x軸的負(fù)半軸交于點(diǎn)M,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形與△PBC相似?如果存在,請(qǐng)直接寫出M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,AB=4cm,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)45°后得到△A′BC′,則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工程交由甲、乙兩個(gè)工程隊(duì)來(lái)完成,已知甲工程隊(duì)單獨(dú)完成需要60天,乙工程隊(duì)單獨(dú)完成需要40

(1)若甲工程隊(duì)先做30天后,剩余由乙工程隊(duì)來(lái)完成,還需要用時(shí)   

(2)若甲工程隊(duì)先做20天,乙工程隊(duì)再參加,兩個(gè)工程隊(duì)一起來(lái)完成剩余的工程,求共需多少天完成該工程任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為24厘米.甲、乙兩動(dòng)點(diǎn)同時(shí)從頂點(diǎn)A出發(fā),甲以2厘米/秒的速度沿正方形的邊按順時(shí)針?lè)较蛞苿?dòng),乙以4厘米/秒的速度沿正方形的邊按逆時(shí)針?lè)较蛞苿?dòng),每次相遇后甲乙的速度均增加1厘米/秒且都改變?cè)较蛞苿?dòng),則第四次相遇時(shí)甲與最近頂點(diǎn)的距離是______厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系.

1B出發(fā)時(shí)與A相距______千米.

2B走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是______小時(shí).

3B出發(fā)后______小時(shí)與A相遇.

4)若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),______小時(shí)與A相遇,相遇點(diǎn)離B的出發(fā)點(diǎn)______千米.在圖中表示出這個(gè)相遇點(diǎn)C

5)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校計(jì)劃購(gòu)進(jìn)AB兩種樹木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購(gòu)買A種樹木2棵,B種樹木5棵,共需600元;購(gòu)買A種樹木3棵,B種樹木1棵,共需380元.

A種,B種樹木每棵各多少元?

因布局需要,購(gòu)買A種樹木的數(shù)量不少于B種樹木數(shù)量的3學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下不考慮其他因素,實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買樹木的方案,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DCAB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=CBD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】武警戰(zhàn)士乘一沖鋒舟從地逆流而上,前往地營(yíng)救受困群眾,途經(jīng)地時(shí),由所攜帶的救生艇將地受困群眾運(yùn)回地,沖鋒舟繼續(xù)前進(jìn),到地接到群眾后立刻返回地,途中曾與救生艇相遇.沖鋒舟和救生艇距地的距離(千米)和沖鋒舟出發(fā)后所用時(shí)間(分)之間的函數(shù)圖象如圖所示.假設(shè)營(yíng)救群眾的時(shí)間忽略不計(jì),水流速度和沖鋒舟在靜水中的速度不變.

1)請(qǐng)直接寫出沖鋒舟從地到地所用的時(shí)間.

2)求水流的速度.

3)沖鋒舟將地群眾安全送到地后,又立即去接應(yīng)救生艇.已知救生艇與地的距離(千米)和沖鋒舟出發(fā)后所用時(shí)間(分)之間的函數(shù)關(guān)系式為,假設(shè)群眾上下船的時(shí)間不計(jì),求沖鋒舟在距離地多遠(yuǎn)處與救生艇第二次相遇?

查看答案和解析>>

同步練習(xí)冊(cè)答案