【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線分別交AB,AC于點(diǎn)D,E.
(1)若∠A=40°,求∠EBC的度數(shù);
(2)若AD=5,△EBC的周長為16,求△ABC的周長.
【答案】(1)∠EBC=30°;(2)△ABC的周長= 26.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠ABC的度數(shù),根據(jù)線段的垂直平分線的性質(zhì)求出∠EBA的度數(shù),計(jì)算即可;
(2)根據(jù)線段的垂直平分線的性質(zhì)和三角形的周長公式求出AC+BC+AB=16+5+5=26,計(jì)算即可.
(1)∵AB=AC,∠A=40°,∴∠ABC=∠C=70°.
∵DE是AB的垂直平分線,∴EA=EB,∴∠EBA=∠A=40°,∴∠EBC=30°;
(2)∵DE是AB的垂直平分線,∴DA=BD=5,EB=AE,△EBC的周長=EB+BC+EC=EA+BC+EC=AC+BC=16,則△ABC的周長=AB+BC+AC=26.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更新果樹品種,某果園計(jì)劃新購進(jìn)A、B兩個(gè)品種的果樹苗栽植培育,若計(jì)劃購進(jìn)這兩種果樹苗共45棵,其中A種苗的單價(jià)為7元/棵,購買B種苗所需費(fèi)用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購買計(jì)劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請?jiān)O(shè)計(jì)購買方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知△ABC,以AB、AC為邊分別向外作正方形ABFD和正方形ACGE,連結(jié)BE、CD,猜想BE與CD有什么數(shù)量關(guān)系?并說明理由;
(2)請模仿正方形情景下構(gòu)造全等三角形的思路,利用構(gòu)造全等三角形完成下題:如圖2,要測量池塘兩岸相對的兩點(diǎn)B、E的距離,已經(jīng)測得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的長(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過反比例函數(shù)y= (x>0)的圖象上一點(diǎn)A作AB⊥x軸于點(diǎn)B,連接AO,若S△AOB=2,則k的值為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的3倍時(shí),我們稱此三角形為“夢想三角形”.如果一個(gè)“夢想三角形”有一個(gè)角為108°,那么這個(gè)“夢想三角形”的最小內(nèi)角的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線y=﹣ x+n交x軸于點(diǎn)A,交y軸于點(diǎn)C(0,4),拋物線y= x2+bx+c經(jīng)過點(diǎn)A,交y軸于點(diǎn)B(0,﹣2).點(diǎn)P為拋物線上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線PD,過點(diǎn)B作BD⊥PD于點(diǎn)D,連接PB,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)當(dāng)△BDP為等腰直角三角形時(shí),求線段PD的長;
(3)如圖2,將△BDP繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到△BD′P′,且旋轉(zhuǎn)角∠PBP′=∠OAC,當(dāng)點(diǎn)P的對應(yīng)點(diǎn)P′落在坐標(biāo)軸上時(shí),請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2﹣6x+c與x軸交于點(diǎn)A(﹣5,0)、B(﹣1,0),與y軸交于點(diǎn)C(0,﹣5),點(diǎn)P是拋物線上的動(dòng)點(diǎn),連接PA、PC,PC與x軸交于點(diǎn)D.
(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)若點(diǎn)P的坐標(biāo)為(﹣2,3),請求出此時(shí)△APC的面積;
(3)過點(diǎn)P作y軸的平行線交x軸于點(diǎn)H,交直線AC于點(diǎn)E,如圖2.
①若∠APE=∠CPE,求證: ;
②△APE能否為等腰三角形?若能,請求出此時(shí)點(diǎn)P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置,點(diǎn)C1、C2、C3…在x軸上,點(diǎn)A1、A2、A3…在直線l上,A1(0,1),∠A2 A1B1=45°,則點(diǎn)Bn的坐標(biāo)為____________(用n的代數(shù)式表示,n為正整數(shù));
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com