【題目】如圖,在等腰中,.點(diǎn)從點(diǎn)出發(fā)沿射線方向運(yùn)動(dòng),同時(shí)點(diǎn)從出發(fā),以相同的速度沿射線方向運(yùn)動(dòng),連,交直線于點(diǎn)
當(dāng)點(diǎn)運(yùn)動(dòng)到中點(diǎn)時(shí),求的長(zhǎng).
求證:.
過點(diǎn)作,交直線于,請(qǐng)?zhí)骄?/span>之間的數(shù)量關(guān)系,并直接寫出結(jié)論.
【答案】(1);(2)證明見解析;(3)當(dāng)點(diǎn)在上時(shí),;當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí)
【解析】
(1)根據(jù)題意得出CF,然后利用勾股定理即可得出DF;
(2)首先作,利用平行的性質(zhì)構(gòu)造,即可得證;
(3)分情況探究:當(dāng)點(diǎn)在上和的延長(zhǎng)線上時(shí),利用三線合一的性質(zhì)進(jìn)行等量轉(zhuǎn)換即可.
(1)由題意,得AD=CF==2,
∴AF=AC+CF=4+2=6
∴
(2)作,如圖所示:
∴∠BKD=∠BCA,∠KDG=∠CFG
∴∠DKG=∠FCG
∵D為AB中點(diǎn),DK∥AC
∴DK=CF
∴(ASA),
∴
(3)當(dāng)點(diǎn)在上時(shí),如圖所示,
∵等腰
∴∠B=45°
∵
∴BH=HK
∵
∴KG=CG
∴;
當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),如圖所示:
∵等腰
∴∠B=45°
∵
∴BH=GH
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,,分別是,的中點(diǎn),是對(duì)角線,交延長(zhǎng)線于.若四邊形是菱形,則四邊形是( )
A. 平行四邊形 B. 矩形
C. 菱形 D. 正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-3,5),B(-2,1),C(-1,3).
(1)畫出△ABC關(guān)于x軸的對(duì)稱圖形△A1B1C1;
(2)畫出△A1B1C1沿x軸向右平移4個(gè)單位長(zhǎng)度后得到的△A2B2C2;
(3)如果AC上有一點(diǎn)M(a,b)經(jīng)過上述兩次變換,那么對(duì)應(yīng)A2C2上的點(diǎn)M2的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是三角形內(nèi)一點(diǎn),連接AD,BD,CD,∠BDC=90°,∠DBC=45°.
(1)求證:∠BAD=∠CAD;
(2)求∠ADB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,OD⊥AB,垂足為點(diǎn)C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若CD=2,AB=8,求半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組在本校九年級(jí)學(xué)生中以“你最喜歡的項(xiàng)體育運(yùn)動(dòng)"為主體進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成下表和下圖.
項(xiàng)目 | 籃球 | 乒乓球 | 羽毛球 | 跳繩 | 其他 |
人數(shù) | 12 | 10 | 5 | 8 |
請(qǐng)根據(jù)圖表中的信息完成下列各題:
(1)本次共調(diào)查學(xué)生______名;
(2)=______;
(3)在扇形圖中,“跳繩”對(duì)應(yīng)的扇形圓是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)直徑為1m的圓形鐵皮,要從中剪出一個(gè)最大的圓心角為90°的扇形ABC,如圖所示.
(1)求被剪掉陰影部分的面積:
(2)用所留的扇形鐵皮圍成一個(gè)圓錐,該圓錐的底面圓的半徑是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,D、E分別是半徑OA、OB的中點(diǎn),C是上一點(diǎn),CD=CE.
(1)求證:=;
(2)若∠AOB=120°,CD=,求半徑OA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com