【題目】某農(nóng)科所在相同條件下做某種作物種子發(fā)芽率的試驗,結(jié)果如表所示:

種子個數(shù)n

1000

1500

2500

4000

8000

15000

20000

30000

發(fā)芽種子個數(shù)m

899

1365

2245

3644

7272

13680

18160

27300

發(fā)芽種子頻率

0.899

0.910

0.898

0.911

0.909

0.912

0.908

0.910

則該作物種子發(fā)芽的概率約為_____________.(保留一位小數(shù))

【答案】0.9

【解析】

根據(jù)某農(nóng)科所在相同條件下做某作物種子發(fā)芽率的試驗表,可得大量重復試驗發(fā)芽率逐漸穩(wěn)定在0.910左右,再結(jié)合題意即可得到答案.

隨著種子個數(shù)的增加,發(fā)芽種子的頻率越來越穩(wěn)定.當種子的個數(shù)為30000時,發(fā)芽種子的頻率為0.910,于是可以估計種子的發(fā)芽的概率為0.910.又因為保留一位小數(shù),所以該作物種子發(fā)芽的概率約為0.9.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知拋物線yax2bx(a≠0)經(jīng)過A30),B4,4)兩點.

1)求拋物線解析式.

2)將直線OB向下平移m個單位后,得到的直線與拋物線只有一個公共點D,求m值及交點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一塊三角形材料,∠A30°,∠C90°,AB6.用這塊材料剪出一個矩形DECF,點D,E,F分別在AB,BC,AC上,要使剪出的矩形DECF面積最大,點D應(yīng)該選在何處?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點EBC的延長線上,且CEBC,AEAB,AE、DC相交于點O,連接DE.若∠AOD120°AC4,則CD的大小為( 。

A.8B.4C.8D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進價為元的蘋果,物價部門規(guī)定每箱售價不得高于元,市場調(diào)查發(fā)現(xiàn),若每箱以元的價格銷售,平均每天銷售箱,價格每提高元,平均每天少銷售箱.

求該批發(fā)商平均每天的銷售利潤(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式.當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知k是常數(shù),拋物線yx2(k2k6)x3k的對稱軸是y軸,并且與x軸有兩個交點.

(1)k的值:

(2)若點P在拋物線yx2(k2k6)x3k上,且Py軸的距離是2,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBCAB=DC,AD=3cmBC=7cm,∠B=60°,PBC邊上一點(不與BC重合),連接AP,過P點作PEDCE,使得∠APE=B

(1)求證:△ABP∽△PCE

(2)求AB的長;

(3)在邊BC上是否存在一點P,使得DEEC=5:3?如果存在,求BP的長;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y1ya1x+12+1y2ya2x423交于點A1,3),過點Ax軸的平行線,分別交兩條拋物線于點B,C.下列結(jié)論,正確的是( 。

A.B.時,x1

C.時,0≤x1D.3AB2AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】長城汽車銷售公司5月份銷售某種型號汽車,當月該型號汽車的進價為30萬元/輛,若當月銷售量超過5輛時,每多售出1輛,所有售出的汽車進價均降低0.1萬元/輛.根據(jù)市場調(diào)查,月銷售量不會突破30臺.

1)設(shè)當月該型號汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實際進價為y萬元/輛,求yx的函數(shù)關(guān)系式;

2)已知該型號汽車的銷售價為32萬元/輛,公司計劃當月銷售利潤45萬元,那么該月需售出多少輛汽車?(注:銷售利潤=銷售價﹣進價)

查看答案和解析>>

同步練習冊答案