【題目】如圖,在△ABC 中,∠BAC90°,ABAC12cm,點 D 為△ABC 內(nèi)一點,∠BAD15°,AD 4 cm,連接 BD,將△ABD 繞點 A 按逆時針方向旋轉,使 AB AC 重合,點 D 的對應點點 E,連接 DE,DE AC 于點 F,則 CF 的長為__________cm

【答案】4

【解析】

根據(jù)旋轉的性質以及直角三角形的性質得出△DAE是等腰直角三角形,進而求出DE的長度和叫FAG的度數(shù),再利用直角三角形中30°的性質以及三角函數(shù)計算即可得出答案.

如圖所示,過點ABE的垂線交BE于點G

根據(jù)旋轉的性質可知:AB=AC=12cm

AD=AE=cm,∠BAD=CAE=15°

∵∠BAC=90°,即∠BAD+DAF=90°

∴∠CAE+DAF=90°,即∠DAE=90°

AD=AE

∴△DAE是等腰直角三角形

∴∠AED=45°,DE=cm

AGDE

∴∠EAG=45°

∵∠CAE=15°

∴∠FAG=EAG-EAF=30°

AG=DE=cm

AF=cm

CF=AC-AF=12-8=4cm

故答案為4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,點D為邊BC的中點,以AD為邊作等邊△ADE,連接BE.
求證:BE=BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有足夠多的長方形和正方形卡片,如下圖:

(1)如果選取1號、2號、3號卡片分別為l張、1張、2張,可拼成一個長方形(不重疊無縫隙),請畫出這個長方形(所畫圖形大小和原圖保持一致),并用等式表示拼圖前后面積之間的關系:         

(2)小明用類似方法解釋分解因式a25ab4b2,請畫圖說明小明的方法(所畫圖形大小和原圖保持一致),并寫出分解因式的結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,DCE的角平分線CG的反向延長線和ABE的角平分線BF交于點FEF36°,則E=(

A.82°B.84°C.97°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形ABC(記作△ABC)在8×8方格中,位置如圖所示,A(﹣2,1),B(﹣1,4).

1)請你在方格中建立直角坐標系,并寫出C點的坐標;

2)把△ABC向上平移2個單位長度,再向右平移3個單位長度,請你畫出平移后的△A1B1C1,若△ABC內(nèi)部一點P的坐標為(a,b),則點P的對應點P1的坐標是  

3)在x軸上存在一點D,使△DBC的面積等于3,則點D的坐標為     

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADBC,BC,垂足分別為D、F,23180,試說明:GDCB,請補充說明過程,并在括號內(nèi)填上相應的理由。

解:ADBC,EFBC(已知)

ADBEFB90( ),

EF//AD( ),

2180( ),

23180(已知),

13( ),

AB// ( ),

∴∠GDC=∠B( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形和正方形中,邊在邊上,正方形繞點按逆時針方向旋轉

1)如圖2,當時,求證:

2)在旋轉的過程中,設的延長線交直線于點如果存在某一時刻使得,請求出此時的長;若正方形繞點按逆時針方向旋轉了,求旋轉過程中,點運動的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)一種新型生物醫(yī)藥產(chǎn)品,生產(chǎn)成本為2萬元/ 噸,每月生產(chǎn)能力為12噸,且生產(chǎn)出的產(chǎn)品都能銷售出去.這種產(chǎn)品部分內(nèi)銷,另一部分外銷(出口),內(nèi)銷與外銷的單價 (單位:萬元/噸)與銷量的關系分別如圖1,圖2.

(1)如果該公司內(nèi)銷數(shù)量為x(單位:噸),內(nèi)、外銷單價分別為y 1 , y 2 ,求, 關于x的函數(shù)解析式;
(2)如果該公司內(nèi)銷數(shù)量為x(單位:噸),求內(nèi)銷獲得的毛利潤 關于x的函數(shù)解析式;
(3)請設計一種銷售方案,使該公司本月能獲得最大毛利潤,并求出毛利潤的最大值.(毛利潤=銷售收入-生產(chǎn)成本).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:的兩條高交于點,點分別是,的中點,連接

求證:垂直平分;

.判斷以為頂點的四邊形的形狀,并證明你的結論.

查看答案和解析>>

同步練習冊答案