一組數(shù)據(jù)x1,x2,…,xn的平均數(shù)為5,方差為16,其中n是正整數(shù),則另一組數(shù)據(jù)3x1+2,3x2+2,…,3xn+2的平均數(shù)和標準差分別是(  )
A、15,144B、17,144C、17,12D、7,16
分析:根據(jù)標準差的概念計算.先表示出數(shù)據(jù)x1、x2、x3、x4、x5的平均數(shù),方差;然后表示新數(shù)據(jù)的平均數(shù)和方差,通過代數(shù)式的變形即可求得新數(shù)據(jù)的平均數(shù)和方差.
解答:解:∵x1,x2,…,xn的平均數(shù)是5,則x1+x2+…+xn=5n.
.
x
′=
1
n
[(3x1+2)+…+(3xn+2)]=
1
n
[3×(x1+x2+…+xn)+2n]=17,
S′2=
1
n
[(3x1+2-17)2+(3x2+2-17)2+…+(3xn+2-17)2]
=
1
n
[(3x1-15)2+…+(3xn-15)2]=9×
1
n
[(x1-5)2+(x2-5)2+…+(xn-5)2]=144.
∴標準差為12.
故選C.
點評:本題考查的是標準差的計算.計算標準差需要先算出方差,計算方差的步驟是:①計算數(shù)據(jù)的平均數(shù)
.
x
;②計算偏差,即每個數(shù)據(jù)與平均數(shù)的差;③計算偏差的平方和;④偏差的平方和除以數(shù)據(jù)個數(shù).標準差即方差的算術(shù)平方根;注意標準差和方差一樣都是非負數(shù).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

設一組數(shù)據(jù)x1,x2…xn的方差為S2,將每個數(shù)據(jù)都乘以2,則新數(shù)據(jù)的方差為
 
;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•孝感)已知一組數(shù)據(jù)x1,x2,…,xn的方差是s2,則新的一組數(shù)據(jù)ax1+1,ax2+1,…,axn+1(a為常數(shù),a≠0)的方差是
a2s2
a2s2
(用含a,s2的代數(shù)式表示).
(友情提示:s2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2])

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一組數(shù)據(jù)x1,x2,…xa的每一個數(shù)都加上同一數(shù)a(a≠0),得到一組新數(shù)據(jù)x1+a,x2+a,…xa+a,則這組新數(shù)據(jù)(與原數(shù)據(jù)相比)( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一組數(shù)據(jù)x1,x2,…,xn的方差為S2,那么數(shù)據(jù)kx1-5,kx2-5,…,kxn-5的方差為
k2S2
k2S2
.標準差為
ks
ks

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在一組數(shù)據(jù)x1,x2,xn中,各數(shù)據(jù)與它們的平均數(shù)
.
x
的差的絕對值的平均數(shù),記作T=
1
n
(|x1-
.
x
|+|x2-
.
x
|+…+|xn-
.
x
|)
叫做這組數(shù)據(jù)的“平均差”.一組數(shù)據(jù)的平均差越大,就說明這組數(shù)據(jù)的離散程度越大.則樣本:1、2、3、4、5 的平均差是(  )

查看答案和解析>>

同步練習冊答案