(2013•濟(jì)寧)在我國(guó)明代數(shù)學(xué)家吳敬所著的《九章算術(shù)比類大全》中,有一道數(shù)學(xué)名題叫“寶塔裝燈”,內(nèi)容為“遠(yuǎn)望巍巍塔七層,紅燈點(diǎn)點(diǎn)倍加增;共燈三百八十一,請(qǐng)問(wèn)頂層幾盞燈?”(倍加增指從塔的頂層到底層).請(qǐng)你算出塔的頂層有
3
3
盞燈.
分析:根據(jù)題意,假設(shè)頂層的紅燈有x盞,則第二層有2x盞,依次第三層有4x盞,第四層有8x盞,第五層有16x盞,第六層有32x盞,第七層有64x盞,總共381盞,列出等式,解方程,即可得解.
解答:解:假設(shè)頂層的紅燈有x盞,由題意得:
x+2x+4x+8x+16x+32x+64x=381,
127x=381,
x=3(盞);
答:塔的頂層是3盞燈.
故答案為:3.
點(diǎn)評(píng):此題主要考查了一元一次方程的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)寧)如圖,直線y=-
12
x+4與坐標(biāo)軸分別交于點(diǎn)A、B,與直線y=x交于點(diǎn)C.在線段OA上,動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).分別過(guò)點(diǎn)P、Q作x軸的垂線,交直線AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動(dòng)時(shí)間為t秒,在運(yùn)動(dòng)過(guò)程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外).
(1)求點(diǎn)P運(yùn)動(dòng)的速度是多少?
(2)當(dāng)t為多少秒時(shí),矩形PEFQ為正方形?
(3)當(dāng)t為多少秒時(shí),矩形PEFQ的面積S最大?并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)寧三模)如圖,P1是反比例函數(shù)y=
k
x
(k>0)
在第一象限圖象上的一點(diǎn),點(diǎn)A1的坐標(biāo)為(2,0).若△P1OA1與△P2A1A2均為等邊三角形,則A2點(diǎn)的橫坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)寧三模)如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時(shí)BD=CF,BD⊥CF成立.

(1)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
(2)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)G.求證:BD⊥CF;
(3)在(2)小題的條件下,AC與BG的交點(diǎn)為M,當(dāng)AB=4,AD=
2
時(shí),求線段CM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)寧)如圖,△ABC和△A′B′C是兩個(gè)完全重合的直角三角板,∠B=30°,斜邊長(zhǎng)為10cm.三角板A′B′C繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)A′落在AB邊上時(shí),CA′旋轉(zhuǎn)所構(gòu)成的扇形的弧長(zhǎng)為
3
3
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案