【題目】如圖,從熱氣球C處測(cè)得地面A、B兩點(diǎn)的俯角分別是30°、45°,如果此時(shí)熱氣球C處的高度CD為100米,點(diǎn)A、D、B在同一直線上,則AB兩點(diǎn)的距離是( )
A.200米
B.200 米
C.220 米
D.100( +1)米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),其部分圖象如圖所示,給出下列四個(gè)結(jié)論: ①a<0; ②b2﹣4ac>0;③2a﹣b=0;④若點(diǎn)P(x0 , y0)在拋物線上,則ax02+bx0+c≤a﹣b+c.其中結(jié)論正確的是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)證明四邊形ABDF是平行四邊形;
(2)若AF=DF=5,AD=6,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】浠水縣商場(chǎng)某柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 4臺(tái) | 1200元 |
第二周 | 5臺(tái) | 6臺(tái) | 1900元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,商場(chǎng)銷售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過(guò)1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一天,某客運(yùn)公司的甲、乙兩輛客車分別從相距380千米的A、B兩地同時(shí)出發(fā)相向而行,并以各自的速度勻速行駛,兩車行駛2小時(shí)時(shí)甲車先到達(dá)服務(wù)區(qū)C地,此時(shí)兩車相距20千米,甲車在服務(wù)區(qū)C地休息了20分鐘,然后按原速度開(kāi)往B地;乙車行駛2小時(shí)15分鐘時(shí)也經(jīng)過(guò)C地,未停留繼續(xù)開(kāi)往A地.(友情提醒:畫(huà)出線段圖幫助分析)
(1)乙車的速度是________千米/小時(shí),B、C兩地的距離是________千米, A、C兩地的距離是________千米;
(2)求甲車的速度;
(3)這一天,乙車出發(fā)多長(zhǎng)時(shí)間,兩車相距200千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】地表以下巖層的溫度T(℃)隨著所處的深度h(km)的變化而變化,T與h之間在一定范圍內(nèi)近似地成一次函數(shù)關(guān)系.
(1)根據(jù)下表,求T(℃)與h(km)之間的函數(shù)關(guān)系式;
溫度T(℃) | … | 90 | 160 | 300 | … |
深度h(km) | … | 2 | 4 | 8 | … |
(2)當(dāng)巖層溫度達(dá)到1770℃時(shí),巖層所處的深度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中考體育測(cè)試滿分為40分,某校九年級(jí)進(jìn)行了中考體育模擬測(cè)試,隨機(jī)抽取了部分學(xué)生的考試成績(jī)進(jìn)行統(tǒng)計(jì)分析,并把分析結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.試根據(jù)統(tǒng)計(jì)圖中提供的數(shù)據(jù),回答下列問(wèn)題:
(1)抽取的樣本中,成績(jī)?yōu)?9分的人數(shù)有人;
(2)抽取的樣本中,考試成績(jī)的中位數(shù)是分,眾數(shù)是分;
(3)若該校九年級(jí)共有500名學(xué)生,試根據(jù)這次模擬測(cè)試成績(jī)估計(jì)該校九年級(jí)將有多少名學(xué)生能得到滿分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△ABC≌△BAD的是( )
A.AC=BD
B.∠CAB=∠DBA
C.∠C=∠D
D.BC=AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, ∠ADE+∠BCF=180°,BE平分∠ABC, ∠ABC=2∠E.
(1)AD與BC平行嗎?請(qǐng)說(shuō)明理由;
(2)AB與EF的位置關(guān)系如何?為什么?
(3)若AF平分∠BAD,試說(shuō)明: ∠E+∠F=90°.
(注:本題第(1)(2)小題在下面的解答過(guò)程的空格內(nèi)填寫(xiě)理由或數(shù)學(xué)式;第(3)小題要寫(xiě)出解題過(guò)程)
解:(1) ADB∥C,理由如下:
∵∠ADE+∠BCF=180°(已知) ,
∠ADE+∠ADF=180°(平角的定義),
∴∠ADF__________ (______________________),
∴AD∥BC (__________________________);
(2)AB與EF的位置關(guān)系是:互相平行.
∵BE平分∠ABC(已知),
∴A∠BC=2∠ABE(角平分線定義).
又∵∠ABC=2∠E(已知),
∴2∠E=2∠ABE (____________________),
∴∠E=∠ABE(____________________),
∴_____________ (________________________).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com