【題目】操作、證明:如圖,在平行四邊形ABCD中,連接AC,以點(diǎn)C為圓心BC為半徑畫弧,交ABC的外接圓O于點(diǎn)E,連接AECE

1)求證:ADCE,∠D=∠E

2)連接CO,求證:CO平分∠BCE

3)判斷:一組對(duì)邊相等且一組對(duì)角相等的四邊形是平行四邊形   命題(填).

【答案】1)見解析;(2)見解析;(3)假

【解析】

1)根據(jù)四邊形的性質(zhì)得到ADBC,∠D=∠ABC,根據(jù)圓的性質(zhì)即可得到結(jié)論;

2)連接OB,OE,根據(jù)等腰三角形的性質(zhì)和角平分線的定義即可得到結(jié)論.

1)證明:∵四邊形ABCD是平行四邊形,

ADBC,∠D=∠ABC,

BCCE,∠AEC=∠ABC,

ADCE,∠D=∠E

2)連接OB,OE,

BCCE,

∴∠CBE=∠CEB,

OBOE,

∴∠OBE=∠OEB,

∴∠OBC=∠OEC,

OBOCOE

∴∠OBC=∠OCB,∠OCE=∠OEC,

∴∠OCB=∠OCE,

CO平分∠BCE

3)判斷:一組對(duì)邊相等且一組對(duì)角相等的四邊形是平行四邊形是假命題;

故答案為:假.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別為BCCD的中點(diǎn),連接AE,BF交于點(diǎn)G,將BCF沿BF對(duì)折,得到BPF,延長(zhǎng)FPBA延長(zhǎng)線于點(diǎn)Q,下列結(jié)論正確的個(gè)數(shù)是(

AE=BF;AEBFsinBQP=;S四邊形ECFG=2SBGE

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB的長(zhǎng)為1,線段AB上取點(diǎn)P1滿足關(guān)系式AP12BP1AB,則線段AP1的長(zhǎng)度為_____;線段AP1上取點(diǎn)P2滿足關(guān)系式AP22P1P2AP1,線段AP2上的點(diǎn)P3滿足關(guān)系式AP32P2P3AP2,依次以此類推,APn的長(zhǎng)度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ABC=90°,AB=3,BC=4,過點(diǎn)B的直線把△ABC分割成兩個(gè)三角形,使其中只有一個(gè)是等腰三角形,則這個(gè)等腰三角形的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,頂點(diǎn)是它們的公共頂點(diǎn),,

(特例感悟)(1)當(dāng)頂點(diǎn)與頂點(diǎn)重合時(shí)(如圖1),相交于點(diǎn),相交于點(diǎn),求證:四邊形是菱形;

(探索論證)(2)如圖2,當(dāng)時(shí),四邊形是什么特殊四邊形?試證明你的結(jié)論;

(拓展應(yīng)用)(3)試探究:當(dāng)等于多少度時(shí),以點(diǎn)為頂點(diǎn)的四邊形是矩形?請(qǐng)給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處回合,如圖所示,以水平方向?yàn)?/span>軸,噴水池中心為原點(diǎn)建立平面直角坐標(biāo)系.

(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;

(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品的標(biāo)價(jià)為/件,經(jīng)過兩次降價(jià)后的價(jià)格為/件,并且兩次降價(jià)的百分率相同.

1)求該種商品每次降價(jià)的百分率;

2)若該種商品進(jìn)價(jià)為/件,兩次降價(jià)共售出此種商品件,為使兩次降價(jià)銷售的總利潤(rùn)不少于元,則第一次降價(jià)后至少要售出該種商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】銳角中,邊上的高線,,兩動(dòng)點(diǎn)分別在邊上滑動(dòng),且,以為邊向下作正方形(如圖1),設(shè)其邊長(zhǎng)為

1)當(dāng)恰好落在邊上(如圖2)時(shí),求;

2)正方形公共部分的面積為時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ABC120°,線段AC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CD,連接BD

1)如圖1,若ABBC,求證:BD平分∠ABC;

2)如圖2,若AB2BC,

的值;

連接AD,當(dāng)SABC時(shí),直接寫出四邊形ABCD的面積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案