【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連接AE.
(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(3)如圖3,延長(zhǎng)BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM,求∠CAM的度數(shù).
【答案】(1)見(jiàn)解析;(2)結(jié)論成立,理由見(jiàn)解析;(3)∠CAM=30°.
【解析】
(1)根據(jù)DE∥AB,CE∥AM,同位角相等,又BD=DC,可證得△ABD≌△EDC,繼而證得結(jié)論;
(2)作MG∥DE交CE于G,易證四邊形DMGE是平行四邊形,利用(1)的方法證得△ABD≌△EDC,繼而證得結(jié)論;
(3)取線段CH的中點(diǎn)I,連接MI,證得MI=BH=AM,MI⊥AC,易證得結(jié)論.
(1)∵DE∥AB,
∴∠EDC=∠ABM,
∵CE∥AM,
∴∠ECD=∠ADB,
∵AM是△ABC的中線,且D與M重合,
∴BD=DC,
∴△ABD≌△EDC,
∴AB=ED,
∵AB∥ED,
∴四邊形ABDE是平行四邊形;
(2)結(jié)論成立,理由如下:
如圖2,
過(guò)點(diǎn)M作MG∥DE交CE于G,
∵CE∥AM,
∴四邊形DMGE是平行四邊形,
∴ED=GM,且ED∥GM,
∵MG∥DE∥AB
∴∠GMC=∠ABM,
∵CG∥AM,
∴∠GCM=∠AMB,
∵AM是△ABC的中線,
∴BM=MC,
∴△ABM≌△GMC,
∴AB=GM,AB∥GM,
∴AB∥DE,AB=DE,
∴四邊形ABDE是平行四邊形;
(3)如圖3取線段CH的中點(diǎn)I,連接MI,
∵BM=MC,
∴MI是△BHC的中位線,
∴MI∥BH,MI=BH,
∵BH⊥AC,且BH=AM,
∴MI=AM,MI⊥AC,
∴∠CAM=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 為倡導(dǎo)“低碳生活”,常選擇以自行車(chē)作為代步工具,如圖1所示是一輛自行車(chē)的實(shí)物圖.車(chē)架檔AC與CD的長(zhǎng)分別為45cm,60cm,且它們互相垂直,座桿CE的長(zhǎng)為20cm,點(diǎn)A,C,E在同一條直線上,且∠CAB=75°,如圖2.
(1)求車(chē)架檔AD的長(zhǎng);
(2)求車(chē)座點(diǎn)E到車(chē)架檔AB的距離.
(結(jié)果精確到1 cm.參考數(shù)據(jù): sin75°="0.966," cos75°=0.259,tan75°=3.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】校車(chē)安全是近幾年社會(huì)關(guān)注的重大問(wèn)題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車(chē)速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車(chē)道上確定點(diǎn)D,使CD與垂直,測(cè)得CD的長(zhǎng)等于21米,在上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=300,∠CBD=600.
(1)求AB的長(zhǎng)(精確到0.1米,參考數(shù)據(jù):);
(2)已知本路段對(duì)校車(chē)限速為40千米/小時(shí),若測(cè)得某輛校車(chē)從A到B用時(shí)2秒,這輛校車(chē)是否超速?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,經(jīng)過(guò)B,C兩點(diǎn)的直線為.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P為拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交直線BC于點(diǎn)M,連接PC,若為直角三角形,求點(diǎn)P的坐標(biāo);
(3)當(dāng)P滿(mǎn)足(2)的條件,且點(diǎn)P在直線BC上方的拋物線上時(shí),如圖2,將拋物線沿射線BC方向平移,平移后B,P兩點(diǎn)的對(duì)應(yīng)點(diǎn)分別為,,取AB的中點(diǎn)E,連接,,試探究是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC中,E、F為AC、AB中點(diǎn),EF延長(zhǎng)線交△ABC外接圓于P,則PB:AP的數(shù)值為_____(提示:圓內(nèi)接四邊形對(duì)角互補(bǔ))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中線,E是邊BC上一動(dòng)點(diǎn),將△BED沿ED折疊,點(diǎn)B落在點(diǎn)F處,EF交線段CD于點(diǎn)G,當(dāng)△DFG是直角三角形時(shí),則CE=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全民學(xué)習(xí)、終身學(xué)習(xí)是學(xué)習(xí)型社會(huì)的核心內(nèi)容,努力建設(shè)學(xué)習(xí)型家庭也是一個(gè)重要組成部分.為了解“學(xué)習(xí)型家庭”情況,對(duì)部分家庭五月份的平均每天看書(shū)學(xué)習(xí)時(shí)間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)本次抽樣調(diào)查了 個(gè)家庭;
(2)將圖①中的條形圖補(bǔ)充完整;
(3)學(xué)習(xí)時(shí)間在2~2.5小時(shí)的部分對(duì)應(yīng)的扇形圓心角的度數(shù)是 度;
(4)若該社區(qū)有家庭有3000個(gè),請(qǐng)你估計(jì)該社區(qū)學(xué)習(xí)時(shí)間不少于1小時(shí)的約有多少個(gè)家庭?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰梯形ABCD中,∠B=60°,P、Q同時(shí)從B出發(fā),以每秒1個(gè)單位長(zhǎng)度分別沿B→A→D→C和B→C→D方向運(yùn)動(dòng)至相遇時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為t(秒),△BPQ的面積為S(平方單位),S與t的函數(shù)圖象如圖2,則下列結(jié)論錯(cuò)誤的個(gè)數(shù)有( )
①當(dāng)t=4秒時(shí),S=;②AD=4;③當(dāng)4≤t≤8時(shí),S=;④當(dāng)t=9秒時(shí),BP平分梯形ABCD的面積.
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com