如圖,等腰梯形ABCD中,ADBC,∠DBC=45°,翻折梯形ABCD,使點(diǎn)B重合于點(diǎn)D,折痕分別交AB、BC于點(diǎn)F、E.若AD=2,BC=8.求BE的長(zhǎng).
∵EF是點(diǎn)B、D的對(duì)稱(chēng)軸,
∴△BFE≌△DFE,
∴DE=BE.
∵在△BDE中,DE=BE,∠DBE=45°,
∴∠BDE=∠DBE=45°.
∴∠DEB=90°,
∴DE⊥BC.
在等腰梯形ABCD中,AD=2,BC=8,
過(guò)A作AG⊥BC于G,
∴四邊形AGED是矩形.
∴GE=AD=2.
∵Rt△ABG≌Rt△DCE,
∴BG=EC=3.
∴BE=5.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,在梯形ABCD中,BCAD,DEAB,DE=DC,∠A=100°,則∠B=______,∠C=______,∠ADC=______,∠EDC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在梯形ABCD中,ABCD,∠BCD=90°,AB=25cm,BC=24cm.將該梯形折疊,點(diǎn)A恰好與點(diǎn)D重合,BE為折痕,那么梯形ABCD的面積為_(kāi)_____cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在等腰△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分別為點(diǎn)D,E,連接ED,試說(shuō)明四邊形EBCD是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,梯形ABCD,ADBC,AB在y軸上,B在原點(diǎn),BC在x軸上.
(1)若A(0,8),AD長(zhǎng)20cm,BC長(zhǎng)26cm,求梯形的一腰CD的長(zhǎng)度;

(2)若動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AD邊向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿CB邊向點(diǎn)B以3cm/s的速度運(yùn)動(dòng),P、Q分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(單位:s).
①當(dāng)t為何值時(shí),四邊形PQCD為直角梯形;
②當(dāng)t為何值時(shí),四邊形PQCD為平行四邊形;
③當(dāng)t為何值時(shí),四邊形PQCD為等腰梯形;

(3)用t表示四邊形PQCD的面積S,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,AB⊥BC,E是CD的中點(diǎn),且AB=AD+BC,判斷△ABE的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在梯形ABCD中,兩底AB=14cm,CD=6cm,兩底角∠A=30°,∠B=60°,則腰BC的長(zhǎng)為( 。
A.8cmB.6cmC.4cmD.3cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若等腰梯形ABCD的上,下底之和為2,并且兩條對(duì)角線所交的銳角為60°,則等腰梯形ABCD的面積為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,梯形ABCD的周長(zhǎng)為60cm,ADBC,AEDC,AD=7.5cm,則△ABE的周長(zhǎng)為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案