【題目】已知直線y=kx+b經(jīng)過A(0,2),B(4,0)兩點(diǎn).
(1)求直線AB對(duì)應(yīng)的函數(shù)解析式;
(2)將該直線向上平移6個(gè)單位,求平移后的直線與x軸交點(diǎn)的坐標(biāo).
【答案】(1)y=-x+2(2)(16,0)
【解析】
(1)將兩點(diǎn)代入即可求出k和b的值,繼而可得出答案;
(2)根據(jù)上加下減的法則可得出平移后的解析式,令y=0可求出與x軸交點(diǎn)的坐標(biāo).
(1)將A(0,2),B(4,0)的坐標(biāo)代入y=kx+b,
可得解得
∴y=-x+2;
(2)將直線y=-x+2向上平移6個(gè)單位,即得到直線y=-x+8,
當(dāng)y=0時(shí),有-x+8=0,解得x=16,即直線y=-x+8與x軸交點(diǎn)是(16,0),
所以平移后的直線與x軸交點(diǎn)的坐標(biāo)為(16,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△A′B′C′由△ABC繞點(diǎn)P旋轉(zhuǎn)得到,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=2,AC=4.對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α°,分別交直線BC、AD于點(diǎn)E、F.
(1)當(dāng)α= °,四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)的過程中,從A、B、C、D、E、F中任意4個(gè)點(diǎn)為頂點(diǎn)構(gòu)造四邊形.
①α= °,構(gòu)造的四邊形是菱形;
②若構(gòu)造的四邊形是矩形,求出該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,當(dāng)直線BC、DC被直線AB所截時(shí),∠1的同位角是_______,同旁內(nèi)角是_______;當(dāng)直線AB、AC被直線BC所截時(shí),∠1的同位角是________;當(dāng)直線AB、BC被直線CD所截時(shí),∠2的內(nèi)錯(cuò)角是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù)。
阿基米德(Archimedes,公元前287~公元前212年,古希臘)是有史以來最偉大的數(shù)學(xué)家之一.
阿基米德折弦定理:如圖1,AB和BC是圓O的兩條弦(即折線ABC是圓的一條折弦), BC>AB,M是 的中點(diǎn),即CD=AB+BD。下面是運(yùn)用“截長法”證明CD=AB+BD的部分過程。
證明:如圖2,在CB上截取CG=AB,連接MA、MB、MC、MG。因?yàn)镸是弧ABC的中點(diǎn),所以MA=MC.
任務(wù):
(1)請(qǐng)按照上面的證明思路,完整證明阿基米德折弦定理,即CD=AB+BD。
(2)如圖3,已知等邊△ABC內(nèi)接于圓O,AB=1,D為 上一點(diǎn),∠ABD=45°,AE⊥BD于點(diǎn)E,則△BDC的周長是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一慢車和一快車沿相同路線從A地到B地,所行駛的路程與時(shí)間的函數(shù)圖象如圖所示,試根據(jù)圖象回答下列問題:
(1)由圖象你可以得到哪些信息?
(2)求慢車、快車的速度.
(3)求A,B兩地之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將四邊形ABCD稱為“基本圖形”,且各點(diǎn)的坐標(biāo)分別為A(4,4),B(1,3),C(3,3),D(3,1).
①畫出“基本圖形”關(guān)于原點(diǎn)O對(duì)稱的四邊形A1B1C1D1 , 并填出A1 , B1 , C1 , D1的坐標(biāo);
②畫出“基本圖形”繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°所成的四邊形A2B2C2D2
A1( , )B1( , )
C1( , )D1( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E是AB上一點(diǎn),點(diǎn)F是AD延長線上一點(diǎn),且DF=BE,連接CE、CF.
(1)求證:CE=CF.
(2)在圖1中,若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
(3)根據(jù)你所學(xué)的知識(shí),運(yùn)用(1)、(2)解答中積累的經(jīng)驗(yàn),完成下列各題,如圖2,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.
①若AE=6,DE=10,求AB的長;
②若AB=BC=9,BE=3,求DE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com