【題目】某小區(qū)有一半徑為8m的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線.在距水池中心3m處達(dá)到最高,高度為5m,且各個(gè)方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.
(1)求水柱所在拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)王師傅在噴水池維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8m的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?
【答案】(1);(2)7米.
【解析】
(1)根據(jù)頂點(diǎn)坐標(biāo)可設(shè)二次函數(shù)的頂點(diǎn)式,代入點(diǎn)(8,0),求出a值,此題得解;
(2)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,求出當(dāng)y=1.8時(shí)x的值,由此即可得出結(jié)論.
解:(1)設(shè)水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=a(x﹣3)2+5(a≠0),
將(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,
解得:a=﹣,
∴水柱所在拋物線的函數(shù)表達(dá)式為y=﹣(x﹣3)2+5(0<x<8).
(2)當(dāng)y=1.8時(shí),有﹣(x﹣3)2+5=1.8,
解得:x1=﹣1,x2=7,
∴為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心7米以內(nèi).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課外興趣小組的同學(xué)們要測量被池塘相隔的兩棵樹A,B的距離,他們設(shè)計(jì)了如圖的測量方案:從樹A沿著垂直于AB的方向走到E,再從E沿著垂直于AE的方向走到F,C為AE上一點(diǎn),其中4位同學(xué)分別測得四組數(shù)據(jù):①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB;④∠F,∠ADB,FB.其中能根據(jù)所測數(shù)據(jù)求得A,B兩樹距離的有( )
A.1組B.2組C.3組D.4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,動點(diǎn)從點(diǎn)出發(fā),在邊上以每秒2的速度向點(diǎn)勻速運(yùn)動,同時(shí)動點(diǎn)從點(diǎn)出發(fā),在邊上以每秒的速度向點(diǎn)勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為(),連接.
(1)若,求的值;
(2)若與相似,求的值;
(3)當(dāng)為何值時(shí),四邊形的面積最?并求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn).為拋物線上一點(diǎn),橫坐標(biāo)為,且.
⑴求此拋物線的解析式;
⑵當(dāng)點(diǎn)位于軸下方時(shí),求面積的最大值;
⑶設(shè)此拋物線在點(diǎn)與點(diǎn)之間部分(含點(diǎn)和點(diǎn))最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)之差為.
①求關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;
②當(dāng)時(shí),直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,對稱軸為直線x=的拋物線經(jīng)過B(2,0)、C(0,4)兩點(diǎn),拋物線與x軸的另一交點(diǎn)為A
(1)求拋物線的解析式;
(2)若點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn),設(shè)四邊形COBP的面積為S,求S的最大值;
(3)如圖2,若M是線段BC上一動點(diǎn),在x軸是否存在這樣的點(diǎn)Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)C沿著某條路徑運(yùn)動,以點(diǎn)C為旋轉(zhuǎn)中心,將點(diǎn)A(0,4)逆時(shí)針旋轉(zhuǎn)90°到點(diǎn)B(m,1),若﹣5≤m≤5,則點(diǎn)C運(yùn)動的路徑長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與y軸相交于點(diǎn)A(0,3),與x正半軸相交于點(diǎn)B,對稱軸是直線x=1.
(1)求此拋物線的解析式以及點(diǎn)B的坐標(biāo).
(2)動點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長度的速度沿x軸正方向運(yùn)動,同時(shí)動點(diǎn)N從點(diǎn)O出發(fā),以每秒3個(gè)單位長度的速度沿y軸正方向運(yùn)動,當(dāng)N點(diǎn)到達(dá)A點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動.過動點(diǎn)M作x軸的垂線交線段AB于點(diǎn)Q,交拋物線于點(diǎn)P,設(shè)運(yùn)動的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPN為矩形.
②當(dāng)t>0時(shí),△BOQ能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程
(1)3(x﹣2)2﹣12=0
(2)(x﹣1)(x+3)=﹣4
(3)x2﹣4x+1=0
(4)(2x﹣1)=2(1﹣2x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形中,AB=8,BC=6,過對角線中點(diǎn)的直線分別交,邊于點(diǎn),.
(1)求證:四邊形是平行四邊形;
(2)當(dāng)四邊形是菱形時(shí),求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com