【題目】已知與成正比例,且時,.
(1)求與的函數(shù)關(guān)系式;
(2)當(dāng)時,求的值;
(3)將所得函數(shù)圖象平移,使它過點(diǎn)(2, -1).求平移后直線的解析式.
【答案】(1)y=2x+3;(2)2;(3)y=2x-5.
【解析】
(1)根據(jù)題意設(shè)y與x的關(guān)系式為y-3=kx(k≠0);然后利用待定系數(shù)法求一次函數(shù)解析式;
(2)把x=-代入一次函數(shù)解析式可求得
(3)設(shè)平移后直線的解析式為y=2x+m,把點(diǎn)(2, -1)代入求出m的值,即可求出平移后直線的解析式
(1)設(shè)y-3=kx,則
2k=7-3,解得:k=2,
y與x的函數(shù)關(guān)系式:y=2x+3;
(2)當(dāng)x=-時, y=2
(3)設(shè)平移后直線的解析式為:y=2x+m,過點(diǎn)(2,﹣1)
所以,4+m=-1,得:m=-5,
解析式為:y=2x-5
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,部分同學(xué)隨家長一同到某公園游玩,下面是購買門票時,甲同學(xué)與其爸爸的對話(如圖),試根據(jù)圖中的信息,解決下列問題:
(1)本次共去了幾個成人,幾個學(xué)生?
(2)甲同學(xué)所說的另一種購票方式,是否可以省錢?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,E、F是平行四邊行ABCD的對角線AC上的 兩點(diǎn),AE=CF。
求證:(1)△ADF≌△CBE
(2)EB∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快車與慢車分別從甲乙兩地同時相向出發(fā),勻速而行,快車到達(dá)乙地后停留 1h,然后按原路原速返回, 快車比慢車晚 1h 到達(dá)甲地,快慢兩車距各自出發(fā)地的路程 y(km)與所用的時間 x(h)的關(guān)系如圖所示.
(1)甲乙兩地之間的路程為 km;快車的速度為 km/h;慢車的速度為 km/h ;
(2)出發(fā) h,快慢兩車距各自出發(fā)地的路程相等;(寫出解答過程快慢兩車出發(fā) h 相距 150km.(寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為4的正方形AOCD的頂點(diǎn)A、C分別在y軸和x軸上,點(diǎn)P的坐標(biāo)為(2,0),以點(diǎn)P為圓心,OP的長為半徑向正方形內(nèi)部作一半圓,交線段DF于點(diǎn)F,線段DF的延長線交y軸于點(diǎn)E,DF=DC.
(1)求證:DF是半圓P的切線;
(2)求線段DF所在直線的解析式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地有A,B,C三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機(jī)選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:
公交車用時 公交車用時的頻數(shù) 線路 | 合計 | ||||
A | 59 | 151 | 166 | 124 | 500 |
B | 50 | 50 | 122 | 278 | 500 |
C | 45 | 265 | 167 | 23 | 500 |
早高峰期間,乘坐_________(填“A”,“B”或“C”)線路上的公交車,從甲地到乙地“用時不超過45分鐘”的可能性最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與軸、軸分別交于點(diǎn),,拋物線經(jīng)過點(diǎn),將點(diǎn)向右平移5個單位長度,得到點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求拋物線的對稱軸;
(3)若拋物線與線段恰有一個公共點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育局為了了解初二學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機(jī)抽樣調(diào)查了某校初二學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,回答下列問題:
(1)扇形統(tǒng)計圖中a的值為 ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)在這次抽樣調(diào)查中,眾數(shù)是 天,中位數(shù)是 天;
(4)請你估計該市初二學(xué)生每學(xué)期參加綜合實踐活動的平均天數(shù)約是多少?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,四邊形 OABC 為菱形,對角線 OB、AC 相交于 D 點(diǎn),已知 A點(diǎn)的坐標(biāo)為(10,0),雙曲線 y=( x>0 )經(jīng)過 D 點(diǎn),交 BC 的延長線于 E 點(diǎn),且 OBAC=120(OB>AC),有下列四個結(jié)論:①雙曲線的解析式為y=(x>0);②E 點(diǎn)的坐標(biāo)是(4,6);③sin∠COA=;④EC=;⑤AC+OB=8.其中正確的結(jié)論有( )
A. 4 個 B. 3 個 C. 2 個 D. 1 個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com