【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:AB∥CD;
(2)若∠EHF=80°,∠D=40°,求∠AEM的度數(shù)。
【答案】(1)見解析(2)
【解析】
(1)根據(jù)同位角相等兩直線平行,可證CE∥GF,根據(jù)平行線的性質(zhì)可得∠C=∠FGD,根據(jù)等量關(guān)系可得∠FGD=∠EFG,根據(jù)內(nèi)錯角相等,兩直線平行可得AB∥CD;
(2)根據(jù)對頂角相等可求∠DHG,根據(jù)三角形外角的性質(zhì)可求∠CGF,根據(jù)平行線的性質(zhì)可得∠C,∠AEC,再根據(jù)平角的定義可求∠AEM的度數(shù).
(1)證明:∵∠CED=∠GHD,
∴CE∥GF;
∴∠C=∠FGD,
∵∠C=∠EFG,
∴∠FGD=∠EFG,
∴AB∥CD;
(2)∵∠DHG=∠EHF=80°,∠D=40°,
∴
∵CE∥GF,
∴
∵AB∥CD,
∴
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程ax-(3a+1)x+2(a+1)=0有兩個不相等的實(shí)數(shù)根x1,x2,且x1-x1x2+x2=1-a,則a=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂,使用時,以點(diǎn)A為支撐點(diǎn),鉛筆芯端點(diǎn)B可繞點(diǎn)A旋轉(zhuǎn)作出圓.已知OA=OB=10cm.
(1)當(dāng)∠AOB=18°時,求所作圓的半徑;(結(jié)果精確到0.01cm)
(2)保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度.(結(jié)果精確到0.01cm)
(參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學(xué)計算器)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn) E 在正方形 ABCD 的 AB 邊上(不與點(diǎn) A,B 重合),BD 是對角線,延長 AB 到點(diǎn) F,使 BF=AE,過點(diǎn) E 作 BD 的垂線,垂足為 M,連接 AM,CF.
(1)求證:MB=ME;
(2)①用等式表示線段 AM 與 CF 的數(shù)量關(guān)系,并證明;
②用等式表示線段 AM,BM,DM 之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的面積為20cm2,對角線交于點(diǎn)O;以AB、AO為鄰邊做平行四邊形AOC1B,對角線交于點(diǎn)O1;以AB、AO1為鄰邊做平行四邊形AO1C2B;…;依此類推,則平行四邊形AO4C5B的面積為( )
A.cm2B.cm2C.cm2D.cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子中裝有顏色不同的8個小球,其中紅球3個,黑球5個.
(1)先從袋中取出m(m>1)個紅球,再從袋中隨機(jī)摸出1個球,將“摸出黑球”記為事件A.請完成下列表格:
事件A | 必然事件 | 隨機(jī)事件 |
m的值 |
(2)先從袋中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機(jī)摸出1個球是黑球的概率是,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,m+4),點(diǎn)C(5m+3,0)在x軸的正半軸上,現(xiàn)將點(diǎn)C向左平移4單位長度再向上平移7個單位長度得到對應(yīng)點(diǎn)B(7m﹣7,n).
(1)求m,n的值;
(2)若點(diǎn)P從點(diǎn)C出發(fā)以每秒2個單位長度/秒的速度沿CO方向移動,同時點(diǎn)Q從點(diǎn)O出發(fā)以每秒1個單位長度的速度沿OA方向移動,設(shè)移動的時間為t秒(0<t<7),四邊形OPBA與△OQB的面積分別記為S1,S2.是否存在一段時間,使S1<2S2?若存在,求出t的取值范圍;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,P是對角線AC上的一點(diǎn),點(diǎn)E在BC的延長線上,且PE=PB.
(1)求證:△BCP≌△DCP;
(2)求證:∠DPE=∠ABC;
(3)把正方形ABCD改為菱形,其它條件不變(如圖②),若∠ABC=58°,則∠DPE= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩地相距10千米,上午9:00甲騎電動車從A地出發(fā)到B地,9:10乙開車從B地出發(fā)到A地,甲、乙兩人距A 地距離y(千米)與甲所用的時間x(分)之間的關(guān)系如圖所示。
(1)甲的速度是 千米/分。
(2)乙的速度是 千米/分,乙到達(dá)A地的時間是 。
(3)甲、乙兩人相距4千米的時間是 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com